通过显微镜操作和自动实验设计语言模型,实现人类专业知识与人工智能效率的协同 *

IF 6.3 2区 物理与天体物理 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Machine Learning Science and Technology Pub Date : 2024-06-12 DOI:10.1088/2632-2153/ad52e9
Yongtao Liu, Marti Checa and Rama K Vasudevan
{"title":"通过显微镜操作和自动实验设计语言模型,实现人类专业知识与人工智能效率的协同 *","authors":"Yongtao Liu, Marti Checa and Rama K Vasudevan","doi":"10.1088/2632-2153/ad52e9","DOIUrl":null,"url":null,"abstract":"With the advent of large language models (LLMs), in both the open source and proprietary domains, attention is turning to how to exploit such artificial intelligence (AI) systems in assisting complex scientific tasks, such as material synthesis, characterization, analysis and discovery. Here, we explore the utility of LLMs, particularly ChatGPT4, in combination with application program interfaces (APIs) in tasks of experimental design, programming workflows, and data analysis in scanning probe microscopy, using both in-house developed APIs and APIs given by a commercial vendor for instrument control. We find that the LLM can be especially useful in converting ideations of experimental workflows to executable code on microscope APIs. Beyond code generation, we find that the GPT4 is capable of analyzing microscopy images in a generic sense. At the same time, we find that GPT4 suffers from an inability to extend beyond basic analyses for more in-depth technical experimental design. We argue that an LLM specifically fine-tuned for individual scientific domains can potentially be a better language interface for converting scientific ideations from human experts to executable workflows. Such a synergy between human expertise and LLM efficiency in experimentation can open new doors for accelerating scientific research, enabling effective experimental protocols sharing in the scientific community.","PeriodicalId":33757,"journal":{"name":"Machine Learning Science and Technology","volume":"39 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergizing human expertise and AI efficiency with language model for microscopy operation and automated experiment design *\",\"authors\":\"Yongtao Liu, Marti Checa and Rama K Vasudevan\",\"doi\":\"10.1088/2632-2153/ad52e9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the advent of large language models (LLMs), in both the open source and proprietary domains, attention is turning to how to exploit such artificial intelligence (AI) systems in assisting complex scientific tasks, such as material synthesis, characterization, analysis and discovery. Here, we explore the utility of LLMs, particularly ChatGPT4, in combination with application program interfaces (APIs) in tasks of experimental design, programming workflows, and data analysis in scanning probe microscopy, using both in-house developed APIs and APIs given by a commercial vendor for instrument control. We find that the LLM can be especially useful in converting ideations of experimental workflows to executable code on microscope APIs. Beyond code generation, we find that the GPT4 is capable of analyzing microscopy images in a generic sense. At the same time, we find that GPT4 suffers from an inability to extend beyond basic analyses for more in-depth technical experimental design. We argue that an LLM specifically fine-tuned for individual scientific domains can potentially be a better language interface for converting scientific ideations from human experts to executable workflows. Such a synergy between human expertise and LLM efficiency in experimentation can open new doors for accelerating scientific research, enabling effective experimental protocols sharing in the scientific community.\",\"PeriodicalId\":33757,\"journal\":{\"name\":\"Machine Learning Science and Technology\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Learning Science and Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2632-2153/ad52e9\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2632-2153/ad52e9","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

随着大型语言模型(LLMs)在开源和专有领域的出现,人们开始关注如何利用这种人工智能(AI)系统来辅助复杂的科学任务,如材料合成、表征、分析和发现。在这里,我们探索了 LLM(尤其是 ChatGPT4)与应用程序接口(API)相结合,在扫描探针显微镜的实验设计、编程工作流和数据分析任务中的实用性,同时使用了内部开发的 API 和商业供应商提供的用于仪器控制的 API。我们发现,LLM 在将实验工作流程的构思转换为显微镜 API 的可执行代码方面特别有用。除了代码生成之外,我们还发现 GPT4 能够对显微图像进行一般意义上的分析。与此同时,我们发现 GPT4 无法超越基本分析,进行更深入的技术实验设计。我们认为,专门针对个别科学领域进行微调的 LLM 有可能成为更好的语言界面,将人类专家的科学想法转换为可执行的工作流程。人类的专业知识与 LLM 在实验中的效率之间的这种协同作用,可以为加速科学研究打开新的大门,使科学界能够共享有效的实验方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synergizing human expertise and AI efficiency with language model for microscopy operation and automated experiment design *
With the advent of large language models (LLMs), in both the open source and proprietary domains, attention is turning to how to exploit such artificial intelligence (AI) systems in assisting complex scientific tasks, such as material synthesis, characterization, analysis and discovery. Here, we explore the utility of LLMs, particularly ChatGPT4, in combination with application program interfaces (APIs) in tasks of experimental design, programming workflows, and data analysis in scanning probe microscopy, using both in-house developed APIs and APIs given by a commercial vendor for instrument control. We find that the LLM can be especially useful in converting ideations of experimental workflows to executable code on microscope APIs. Beyond code generation, we find that the GPT4 is capable of analyzing microscopy images in a generic sense. At the same time, we find that GPT4 suffers from an inability to extend beyond basic analyses for more in-depth technical experimental design. We argue that an LLM specifically fine-tuned for individual scientific domains can potentially be a better language interface for converting scientific ideations from human experts to executable workflows. Such a synergy between human expertise and LLM efficiency in experimentation can open new doors for accelerating scientific research, enabling effective experimental protocols sharing in the scientific community.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Machine Learning Science and Technology
Machine Learning Science and Technology Computer Science-Artificial Intelligence
CiteScore
9.10
自引率
4.40%
发文量
86
审稿时长
5 weeks
期刊介绍: Machine Learning Science and Technology is a multidisciplinary open access journal that bridges the application of machine learning across the sciences with advances in machine learning methods and theory as motivated by physical insights. Specifically, articles must fall into one of the following categories: advance the state of machine learning-driven applications in the sciences or make conceptual, methodological or theoretical advances in machine learning with applications to, inspiration from, or motivated by scientific problems.
期刊最新文献
Quality assurance for online adaptive radiotherapy: a secondary dose verification model with geometry-encoded U-Net. Optimizing ZX-diagrams with deep reinforcement learning DiffLense: a conditional diffusion model for super-resolution of gravitational lensing data Equivariant tensor network potentials Masked particle modeling on sets: towards self-supervised high energy physics foundation models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1