Olena S. Iadlovska, Kamal Thapa, Mojtaba Rajabi, Mateusz Mrukiewicz, Sergij V. Shiyanovskii, Oleg D. Lavrentovich
{"title":"斜螺旋胆甾对光的电可调全反射","authors":"Olena S. Iadlovska, Kamal Thapa, Mojtaba Rajabi, Mateusz Mrukiewicz, Sergij V. Shiyanovskii, Oleg D. Lavrentovich","doi":"10.1557/s43577-024-00723-8","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>An oblique helicoidal state of a cholesteric liquid crystal (Ch<sub>OH</sub>) is capable of continuous change of the pitch <span>\\(P\\)</span> in response to an applied electric field. Such a structure reflects 50% of the unpolarized light incident along the Ch<sub>OH</sub> axis in the electrically tunable band determined by <span>\\(P\\)</span>/2. Here, we demonstrate that at an oblique incidence of light, Ch<sub>OH</sub> reflects 100% of light of any polarization. This singlet band of total reflection is associated with the full pitch <span>\\(P\\)</span>. We also describe the satellite <span>\\(P/2\\)</span>, <span>\\(P/3\\)</span>, and <span>\\(P/4\\)</span> bands. The <span>\\(P/2\\)</span> and <span>\\(P/4\\)</span> bands are triplets, whereas <span>\\(P/3\\)</span> band is a singlet caused by multiple scatterings at <span>\\(P\\)</span> and <span>\\(P/2\\)</span>. A single Ch<sub>OH</sub> cell acted upon by an electric field tunes all these bands in a very broad spectral range, from ultraviolet to infrared and beyond, thus representing a structural color device with enormous potential for optical and photonic applications.</p><h3 data-test=\"abstract-sub-heading\">Impact statement</h3><p>Pigments, inks, and dyes produce colors by partially consuming the energy of light. In contrast, structural colors caused by interference and diffraction of light scattered at submicrometer length scales do not involve energy losses, which explains their widespread in Nature and the interest of researchers to develop mimicking materials. The grand challenge is to produce materials in which the structural colors could be dynamically tuned. Among the oldest known materials producing structural colors are cholesteric liquid crystals. Light causes coloration by selective Bragg reflection at the periodic helicoidal structure formed by cholesteric molecules. The cholesteric pitch and thus the color can be altered by chemical composition or by temperature, but, unfortunately, dynamic tuning by electromagnetic field has been elusive. Here, we demonstrate that a cholesteric material in a new oblique helicoidal Ch<sub>OH</sub> state could produce total reflection of an obliquely incident light of any polarization. The material reflects 100% of light within a band that is continuously tunable by the electric field through the entire visible spectrum while preserving its maximum efficiency. Broad electric tunability of total reflection makes the Ch<sub>OH</sub> material suitable for applications in energy-saving smart windows, transparent displays, communications, lasers, multispectral imaging, and virtual and augmented reality.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":18828,"journal":{"name":"Mrs Bulletin","volume":"65 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrically tunable total reflection of light by oblique helicoidal cholesteric\",\"authors\":\"Olena S. Iadlovska, Kamal Thapa, Mojtaba Rajabi, Mateusz Mrukiewicz, Sergij V. Shiyanovskii, Oleg D. Lavrentovich\",\"doi\":\"10.1557/s43577-024-00723-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>An oblique helicoidal state of a cholesteric liquid crystal (Ch<sub>OH</sub>) is capable of continuous change of the pitch <span>\\\\(P\\\\)</span> in response to an applied electric field. Such a structure reflects 50% of the unpolarized light incident along the Ch<sub>OH</sub> axis in the electrically tunable band determined by <span>\\\\(P\\\\)</span>/2. Here, we demonstrate that at an oblique incidence of light, Ch<sub>OH</sub> reflects 100% of light of any polarization. This singlet band of total reflection is associated with the full pitch <span>\\\\(P\\\\)</span>. We also describe the satellite <span>\\\\(P/2\\\\)</span>, <span>\\\\(P/3\\\\)</span>, and <span>\\\\(P/4\\\\)</span> bands. The <span>\\\\(P/2\\\\)</span> and <span>\\\\(P/4\\\\)</span> bands are triplets, whereas <span>\\\\(P/3\\\\)</span> band is a singlet caused by multiple scatterings at <span>\\\\(P\\\\)</span> and <span>\\\\(P/2\\\\)</span>. A single Ch<sub>OH</sub> cell acted upon by an electric field tunes all these bands in a very broad spectral range, from ultraviolet to infrared and beyond, thus representing a structural color device with enormous potential for optical and photonic applications.</p><h3 data-test=\\\"abstract-sub-heading\\\">Impact statement</h3><p>Pigments, inks, and dyes produce colors by partially consuming the energy of light. In contrast, structural colors caused by interference and diffraction of light scattered at submicrometer length scales do not involve energy losses, which explains their widespread in Nature and the interest of researchers to develop mimicking materials. The grand challenge is to produce materials in which the structural colors could be dynamically tuned. Among the oldest known materials producing structural colors are cholesteric liquid crystals. Light causes coloration by selective Bragg reflection at the periodic helicoidal structure formed by cholesteric molecules. The cholesteric pitch and thus the color can be altered by chemical composition or by temperature, but, unfortunately, dynamic tuning by electromagnetic field has been elusive. Here, we demonstrate that a cholesteric material in a new oblique helicoidal Ch<sub>OH</sub> state could produce total reflection of an obliquely incident light of any polarization. The material reflects 100% of light within a band that is continuously tunable by the electric field through the entire visible spectrum while preserving its maximum efficiency. Broad electric tunability of total reflection makes the Ch<sub>OH</sub> material suitable for applications in energy-saving smart windows, transparent displays, communications, lasers, multispectral imaging, and virtual and augmented reality.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\\n\",\"PeriodicalId\":18828,\"journal\":{\"name\":\"Mrs Bulletin\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mrs Bulletin\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1557/s43577-024-00723-8\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mrs Bulletin","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43577-024-00723-8","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Electrically tunable total reflection of light by oblique helicoidal cholesteric
Abstract
An oblique helicoidal state of a cholesteric liquid crystal (ChOH) is capable of continuous change of the pitch \(P\) in response to an applied electric field. Such a structure reflects 50% of the unpolarized light incident along the ChOH axis in the electrically tunable band determined by \(P\)/2. Here, we demonstrate that at an oblique incidence of light, ChOH reflects 100% of light of any polarization. This singlet band of total reflection is associated with the full pitch \(P\). We also describe the satellite \(P/2\), \(P/3\), and \(P/4\) bands. The \(P/2\) and \(P/4\) bands are triplets, whereas \(P/3\) band is a singlet caused by multiple scatterings at \(P\) and \(P/2\). A single ChOH cell acted upon by an electric field tunes all these bands in a very broad spectral range, from ultraviolet to infrared and beyond, thus representing a structural color device with enormous potential for optical and photonic applications.
Impact statement
Pigments, inks, and dyes produce colors by partially consuming the energy of light. In contrast, structural colors caused by interference and diffraction of light scattered at submicrometer length scales do not involve energy losses, which explains their widespread in Nature and the interest of researchers to develop mimicking materials. The grand challenge is to produce materials in which the structural colors could be dynamically tuned. Among the oldest known materials producing structural colors are cholesteric liquid crystals. Light causes coloration by selective Bragg reflection at the periodic helicoidal structure formed by cholesteric molecules. The cholesteric pitch and thus the color can be altered by chemical composition or by temperature, but, unfortunately, dynamic tuning by electromagnetic field has been elusive. Here, we demonstrate that a cholesteric material in a new oblique helicoidal ChOH state could produce total reflection of an obliquely incident light of any polarization. The material reflects 100% of light within a band that is continuously tunable by the electric field through the entire visible spectrum while preserving its maximum efficiency. Broad electric tunability of total reflection makes the ChOH material suitable for applications in energy-saving smart windows, transparent displays, communications, lasers, multispectral imaging, and virtual and augmented reality.
期刊介绍:
MRS Bulletin is one of the most widely recognized and highly respected publications in advanced materials research. Each month, the Bulletin provides a comprehensive overview of a specific materials theme, along with industry and policy developments, and MRS and materials-community news and events. Written by leading experts, the overview articles are useful references for specialists, but are also presented at a level understandable to a broad scientific audience.