Nafisur Rahman, Shahroora Sameen, Mohammad Kashif, Mohd Nasir
{"title":"优化盐酸曲唑酮定量的光谱荧光比色法的统计设计方法","authors":"Nafisur Rahman, Shahroora Sameen, Mohammad Kashif, Mohd Nasir","doi":"10.1134/s1061934824700175","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>A sensitive spectrofluorimetric method was developed to determine trazodone hydrochloride in its formulation and urine sample. The principle of the developed method is based on the formation of an ion pair complex at a pH of 4.27 between the analyte drug and eosin Y, followed by its extraction into dichloromethane and subsequent fluorescence measurement. The fluorescence of the extracted trazodone-eosin Y complex was recorded at 450 nm with an excitation wavelength of 350 nm. Recording the fluorescence was utilized to construct the calibration plot, which was found to be linear in the range of 32.0–1.50 × 10<sup>3</sup> ng/mL of trazodone hydrochloride. The influences of experimental variables, namely pH, volumes of eosin Y (2.90 × 10<sup>–3</sup> M), and buffer solution (pH 4.27), on the fluorescence intensity were examined and optimized by response surface methodology via Box−Behnken design. The limits of detection and the limit of quantitation of the reported method are 9.50 and 28.79 ng/mL, respectively. The accuracy of the proposed method was evaluated for intra-day and inter-day precision in the range of 0.46 to 0.77% RSD. The content of trazodone hydrochloride in its dosage forms was determined by the developed method using the standard addition technique, and the results showed good recovery between 96.50 and 99.25%, with a standard analytical error of 1.54 × 10<sup>–5</sup> to 2.86 × 10<sup>–4</sup>. Interval hypothesis testing confirmed that it is lower than ±2%; hence, there was no bias between the developed and reference methods. No interference was observed from the common excipients present in tablet formulations. The developed method was also successfully applied for the determination of trazodone in urine samples, and recovery of the drug was observed in the range of 90–98%.</p>","PeriodicalId":606,"journal":{"name":"Journal of Analytical Chemistry","volume":"14 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical Design Approach for Optimizing the Spectrofluorimetric Method for Quantifying Trazodone Hydrochloride\",\"authors\":\"Nafisur Rahman, Shahroora Sameen, Mohammad Kashif, Mohd Nasir\",\"doi\":\"10.1134/s1061934824700175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>A sensitive spectrofluorimetric method was developed to determine trazodone hydrochloride in its formulation and urine sample. The principle of the developed method is based on the formation of an ion pair complex at a pH of 4.27 between the analyte drug and eosin Y, followed by its extraction into dichloromethane and subsequent fluorescence measurement. The fluorescence of the extracted trazodone-eosin Y complex was recorded at 450 nm with an excitation wavelength of 350 nm. Recording the fluorescence was utilized to construct the calibration plot, which was found to be linear in the range of 32.0–1.50 × 10<sup>3</sup> ng/mL of trazodone hydrochloride. The influences of experimental variables, namely pH, volumes of eosin Y (2.90 × 10<sup>–3</sup> M), and buffer solution (pH 4.27), on the fluorescence intensity were examined and optimized by response surface methodology via Box−Behnken design. The limits of detection and the limit of quantitation of the reported method are 9.50 and 28.79 ng/mL, respectively. The accuracy of the proposed method was evaluated for intra-day and inter-day precision in the range of 0.46 to 0.77% RSD. The content of trazodone hydrochloride in its dosage forms was determined by the developed method using the standard addition technique, and the results showed good recovery between 96.50 and 99.25%, with a standard analytical error of 1.54 × 10<sup>–5</sup> to 2.86 × 10<sup>–4</sup>. Interval hypothesis testing confirmed that it is lower than ±2%; hence, there was no bias between the developed and reference methods. No interference was observed from the common excipients present in tablet formulations. The developed method was also successfully applied for the determination of trazodone in urine samples, and recovery of the drug was observed in the range of 90–98%.</p>\",\"PeriodicalId\":606,\"journal\":{\"name\":\"Journal of Analytical Chemistry\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1134/s1061934824700175\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1134/s1061934824700175","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Statistical Design Approach for Optimizing the Spectrofluorimetric Method for Quantifying Trazodone Hydrochloride
Abstract
A sensitive spectrofluorimetric method was developed to determine trazodone hydrochloride in its formulation and urine sample. The principle of the developed method is based on the formation of an ion pair complex at a pH of 4.27 between the analyte drug and eosin Y, followed by its extraction into dichloromethane and subsequent fluorescence measurement. The fluorescence of the extracted trazodone-eosin Y complex was recorded at 450 nm with an excitation wavelength of 350 nm. Recording the fluorescence was utilized to construct the calibration plot, which was found to be linear in the range of 32.0–1.50 × 103 ng/mL of trazodone hydrochloride. The influences of experimental variables, namely pH, volumes of eosin Y (2.90 × 10–3 M), and buffer solution (pH 4.27), on the fluorescence intensity were examined and optimized by response surface methodology via Box−Behnken design. The limits of detection and the limit of quantitation of the reported method are 9.50 and 28.79 ng/mL, respectively. The accuracy of the proposed method was evaluated for intra-day and inter-day precision in the range of 0.46 to 0.77% RSD. The content of trazodone hydrochloride in its dosage forms was determined by the developed method using the standard addition technique, and the results showed good recovery between 96.50 and 99.25%, with a standard analytical error of 1.54 × 10–5 to 2.86 × 10–4. Interval hypothesis testing confirmed that it is lower than ±2%; hence, there was no bias between the developed and reference methods. No interference was observed from the common excipients present in tablet formulations. The developed method was also successfully applied for the determination of trazodone in urine samples, and recovery of the drug was observed in the range of 90–98%.
期刊介绍:
The Journal of Analytical Chemistry is an international peer reviewed journal that covers theoretical and applied aspects of analytical chemistry; it informs the reader about new achievements in analytical methods, instruments and reagents. Ample space is devoted to problems arising in the analysis of vital media such as water and air. Consideration is given to the detection and determination of metal ions, anions, and various organic substances. The journal welcomes manuscripts from all countries in the English or Russian language.