{"title":"空间地图:制约约束问题的有利选择","authors":"Zhixian Han, Anne B. Sereno","doi":"10.3389/fncom.2024.1397819","DOIUrl":null,"url":null,"abstract":"Many studies have shown that the human visual system has two major functionally distinct cortical visual pathways: a ventral pathway, thought to be important for object recognition, and a dorsal pathway, thought to be important for spatial cognition. According to our and others previous studies, artificial neural networks with two segregated pathways can determine objects' identities and locations more accurately and efficiently than one-pathway artificial neural networks. In addition, we showed that these two segregated artificial cortical visual pathways can each process identity and spatial information of visual objects independently and differently. However, when using such networks to process multiple objects' identities and locations, a binding problem arises because the networks may not associate each object's identity with its location correctly. In a previous study, we constrained the binding problem by training the artificial identity pathway to retain relative location information of objects. This design uses a location map to constrain the binding problem. One limitation of that study was that we only considered two attributes of our objects (identity and location) and only one possible map (location) for binding. However, typically the brain needs to process and bind many attributes of an object, and any of these attributes could be used to constrain the binding problem. In our current study, using visual objects with multiple attributes (identity, luminance, orientation, and location) that need to be recognized, we tried to find the best map (among an identity map, a luminance map, an orientation map, or a location map) to constrain the binding problem. We found that in our experimental simulations, when visual attributes are independent of each other, a location map is always a better choice than the other kinds of maps examined for constraining the binding problem. Our findings agree with previous neurophysiological findings that show that the organization or map in many visual cortical areas is primarily retinotopic or spatial.","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A spatial map: a propitious choice for constraining the binding problem\",\"authors\":\"Zhixian Han, Anne B. Sereno\",\"doi\":\"10.3389/fncom.2024.1397819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many studies have shown that the human visual system has two major functionally distinct cortical visual pathways: a ventral pathway, thought to be important for object recognition, and a dorsal pathway, thought to be important for spatial cognition. According to our and others previous studies, artificial neural networks with two segregated pathways can determine objects' identities and locations more accurately and efficiently than one-pathway artificial neural networks. In addition, we showed that these two segregated artificial cortical visual pathways can each process identity and spatial information of visual objects independently and differently. However, when using such networks to process multiple objects' identities and locations, a binding problem arises because the networks may not associate each object's identity with its location correctly. In a previous study, we constrained the binding problem by training the artificial identity pathway to retain relative location information of objects. This design uses a location map to constrain the binding problem. One limitation of that study was that we only considered two attributes of our objects (identity and location) and only one possible map (location) for binding. However, typically the brain needs to process and bind many attributes of an object, and any of these attributes could be used to constrain the binding problem. In our current study, using visual objects with multiple attributes (identity, luminance, orientation, and location) that need to be recognized, we tried to find the best map (among an identity map, a luminance map, an orientation map, or a location map) to constrain the binding problem. We found that in our experimental simulations, when visual attributes are independent of each other, a location map is always a better choice than the other kinds of maps examined for constraining the binding problem. Our findings agree with previous neurophysiological findings that show that the organization or map in many visual cortical areas is primarily retinotopic or spatial.\",\"PeriodicalId\":12363,\"journal\":{\"name\":\"Frontiers in Computational Neuroscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Computational Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fncom.2024.1397819\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncom.2024.1397819","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
A spatial map: a propitious choice for constraining the binding problem
Many studies have shown that the human visual system has two major functionally distinct cortical visual pathways: a ventral pathway, thought to be important for object recognition, and a dorsal pathway, thought to be important for spatial cognition. According to our and others previous studies, artificial neural networks with two segregated pathways can determine objects' identities and locations more accurately and efficiently than one-pathway artificial neural networks. In addition, we showed that these two segregated artificial cortical visual pathways can each process identity and spatial information of visual objects independently and differently. However, when using such networks to process multiple objects' identities and locations, a binding problem arises because the networks may not associate each object's identity with its location correctly. In a previous study, we constrained the binding problem by training the artificial identity pathway to retain relative location information of objects. This design uses a location map to constrain the binding problem. One limitation of that study was that we only considered two attributes of our objects (identity and location) and only one possible map (location) for binding. However, typically the brain needs to process and bind many attributes of an object, and any of these attributes could be used to constrain the binding problem. In our current study, using visual objects with multiple attributes (identity, luminance, orientation, and location) that need to be recognized, we tried to find the best map (among an identity map, a luminance map, an orientation map, or a location map) to constrain the binding problem. We found that in our experimental simulations, when visual attributes are independent of each other, a location map is always a better choice than the other kinds of maps examined for constraining the binding problem. Our findings agree with previous neurophysiological findings that show that the organization or map in many visual cortical areas is primarily retinotopic or spatial.
期刊介绍:
Frontiers in Computational Neuroscience is a first-tier electronic journal devoted to promoting theoretical modeling of brain function and fostering interdisciplinary interactions between theoretical and experimental neuroscience. Progress in understanding the amazing capabilities of the brain is still limited, and we believe that it will only come with deep theoretical thinking and mutually stimulating cooperation between different disciplines and approaches. We therefore invite original contributions on a wide range of topics that present the fruits of such cooperation, or provide stimuli for future alliances. We aim to provide an interactive forum for cutting-edge theoretical studies of the nervous system, and for promulgating the best theoretical research to the broader neuroscience community. Models of all styles and at all levels are welcome, from biophysically motivated realistic simulations of neurons and synapses to high-level abstract models of inference and decision making. While the journal is primarily focused on theoretically based and driven research, we welcome experimental studies that validate and test theoretical conclusions.
Also: comp neuro