揭示潜力:金属有机框架@聚(1,3-二氧戊环)甲基丙烯酸酯的核壳纳米粒子组装用于无沟槽超薄薄膜复合膜

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Interfaces Pub Date : 2024-06-22 DOI:10.1002/admi.202400113
Hoseong Han, Joel M. P. Scofield, Paul A. Gurr, Paul A. Webley, Greg G. Qiao
{"title":"揭示潜力:金属有机框架@聚(1,3-二氧戊环)甲基丙烯酸酯的核壳纳米粒子组装用于无沟槽超薄薄膜复合膜","authors":"Hoseong Han, Joel M. P. Scofield, Paul A. Gurr, Paul A. Webley, Greg G. Qiao","doi":"10.1002/admi.202400113","DOIUrl":null,"url":null,"abstract":"Increasing amounts of carbon dioxide (CO<jats:sub>2</jats:sub>) emissions in the atmosphere are a leading cause of climate change. Ultrathin film composite (UTFC) membranes have the potential to effectively reduce CO<jats:sub>2</jats:sub> emissions from energy production and industrial processes. UTFC membranes typically require a gutter layer, to provide flat surfaces above the porous substrate for an ultrathin selective layer to be deposited. Removing the gutter layer, while maintaining compatibility with the support layer, can have substantial benefits of high gas permeation, cost‐effectiveness, and fewer manufacturing steps. However, achieving this faces significant challenges, due to limitations on the geometric design of gas pathways and incompatibility between the substrate and selective layers. Herein, zeolitic imidazolate framework‐8 (ZIF‐8) is used as an initiating core, and arms of poly(1,3‐dioxolane) dimethacrylate (PDXLMA), which possesses superior CO<jats:sub>2</jats:sub>/N<jats:sub>2</jats:sub> selectivity, are used to create core‐shell nanoparticles. These two‐layered UTFC membranes are successfully produced from the nanoparticles via a simple drop‐spreading method. The importance of designing core‐shell structures is also investigated to achieve defect‐free two‐layered UTFC membranes and enable precision thickness control. The resulting membranes exhibit remarkable CO<jats:sub>2</jats:sub> permeance of 3969 – 6035 GPU with CO<jats:sub>2</jats:sub>/N<jats:sub>2</jats:sub> selectivity of 28.0–20.4, demonstrating their considerable performance improvement compared to the current three‐layered UTFC membranes.","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling the Potential: Core‐Shell Nanoparticles Assembly of Metal‐Organic Framework@poly(1,3‐dioxolane) Methacrylate for Gutter‐Layer‐Free Ultrathin Film Composite Membranes\",\"authors\":\"Hoseong Han, Joel M. P. Scofield, Paul A. Gurr, Paul A. Webley, Greg G. Qiao\",\"doi\":\"10.1002/admi.202400113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Increasing amounts of carbon dioxide (CO<jats:sub>2</jats:sub>) emissions in the atmosphere are a leading cause of climate change. Ultrathin film composite (UTFC) membranes have the potential to effectively reduce CO<jats:sub>2</jats:sub> emissions from energy production and industrial processes. UTFC membranes typically require a gutter layer, to provide flat surfaces above the porous substrate for an ultrathin selective layer to be deposited. Removing the gutter layer, while maintaining compatibility with the support layer, can have substantial benefits of high gas permeation, cost‐effectiveness, and fewer manufacturing steps. However, achieving this faces significant challenges, due to limitations on the geometric design of gas pathways and incompatibility between the substrate and selective layers. Herein, zeolitic imidazolate framework‐8 (ZIF‐8) is used as an initiating core, and arms of poly(1,3‐dioxolane) dimethacrylate (PDXLMA), which possesses superior CO<jats:sub>2</jats:sub>/N<jats:sub>2</jats:sub> selectivity, are used to create core‐shell nanoparticles. These two‐layered UTFC membranes are successfully produced from the nanoparticles via a simple drop‐spreading method. The importance of designing core‐shell structures is also investigated to achieve defect‐free two‐layered UTFC membranes and enable precision thickness control. The resulting membranes exhibit remarkable CO<jats:sub>2</jats:sub> permeance of 3969 – 6035 GPU with CO<jats:sub>2</jats:sub>/N<jats:sub>2</jats:sub> selectivity of 28.0–20.4, demonstrating their considerable performance improvement compared to the current three‐layered UTFC membranes.\",\"PeriodicalId\":115,\"journal\":{\"name\":\"Advanced Materials Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/admi.202400113\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/admi.202400113","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

大气中二氧化碳(CO2)排放量的增加是气候变化的主要原因。超薄薄膜复合(UTFC)膜有可能有效减少能源生产和工业过程中的二氧化碳排放。UTFC 膜通常需要一个沟槽层,以便在多孔基材上方提供平坦的表面,沉积超薄选择层。去除沟槽层,同时保持与支撑层的兼容性,可以带来气体渗透率高、成本效益高和制造步骤少等实质性好处。然而,由于气体通道几何设计的限制以及基底和选择性层之间的不相容性,实现这一目标面临着巨大的挑战。在本文中,沸石咪唑酸框架-8(ZIF-8)被用作引发核,而聚(1,3-二氧戊环)二甲基丙烯酸酯(PDXLMA)具有优异的 CO2/N2 选择性,被用来制造核壳纳米颗粒。这种双层UTFC膜是通过一种简单的滴撒方法从纳米颗粒中成功制备出来的。研究还探讨了设计核壳结构的重要性,以实现无缺陷的双层UTFC膜,并实现精确的厚度控制。与目前的三层UTFC膜相比,所制备的膜表现出显著的二氧化碳渗透率(3969 - 6035 GPU)和二氧化碳/氮气选择性(28.0-20.4),这表明它们的性能有了相当大的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unveiling the Potential: Core‐Shell Nanoparticles Assembly of Metal‐Organic Framework@poly(1,3‐dioxolane) Methacrylate for Gutter‐Layer‐Free Ultrathin Film Composite Membranes
Increasing amounts of carbon dioxide (CO2) emissions in the atmosphere are a leading cause of climate change. Ultrathin film composite (UTFC) membranes have the potential to effectively reduce CO2 emissions from energy production and industrial processes. UTFC membranes typically require a gutter layer, to provide flat surfaces above the porous substrate for an ultrathin selective layer to be deposited. Removing the gutter layer, while maintaining compatibility with the support layer, can have substantial benefits of high gas permeation, cost‐effectiveness, and fewer manufacturing steps. However, achieving this faces significant challenges, due to limitations on the geometric design of gas pathways and incompatibility between the substrate and selective layers. Herein, zeolitic imidazolate framework‐8 (ZIF‐8) is used as an initiating core, and arms of poly(1,3‐dioxolane) dimethacrylate (PDXLMA), which possesses superior CO2/N2 selectivity, are used to create core‐shell nanoparticles. These two‐layered UTFC membranes are successfully produced from the nanoparticles via a simple drop‐spreading method. The importance of designing core‐shell structures is also investigated to achieve defect‐free two‐layered UTFC membranes and enable precision thickness control. The resulting membranes exhibit remarkable CO2 permeance of 3969 – 6035 GPU with CO2/N2 selectivity of 28.0–20.4, demonstrating their considerable performance improvement compared to the current three‐layered UTFC membranes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials Interfaces
Advanced Materials Interfaces CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.40
自引率
5.60%
发文量
1174
审稿时长
1.3 months
期刊介绍: Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018. The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface. Advanced Materials Interfaces covers all topics in interface-related research: Oil / water separation, Applications of nanostructured materials, 2D materials and heterostructures, Surfaces and interfaces in organic electronic devices, Catalysis and membranes, Self-assembly and nanopatterned surfaces, Composite and coating materials, Biointerfaces for technical and medical applications. Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.
期刊最新文献
Beyond Structural Stabilization of Highly‐Textured AlN Thin Films: The Role of Chemical Effects Regulation of High-Index Crystal Facets with Laser-Induced Periodic Surface Structures on CoFe2O4 Epitaxial Films for Ethanol Gas Sensing Monomicelle‐Directed Synthesis of Mesoporous Carbon Nanomaterials for Energy Storage and Conversion Origin of the Surface Magnetic Dead Layer in Rare‐Earth Titanates Stability of Immobilized Chemosensor‐Filled Vesicles on Anti‐Fouling Polymer Brush Surfaces (Adv. Mater. Interfaces 21/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1