启用人工智能:使用毫米波 (mmWave) 传感器进行基于物联网的新型假币检测

IF 3.3 3区 计算机科学 Q2 COMPUTER SCIENCE, THEORY & METHODS Computing Pub Date : 2024-06-27 DOI:10.1007/s00607-024-01300-2
Fahim Niaz, Jian Zhang, Muhammad Khalid, Kashif Naseer Qureshi, Yang Zheng, Muhammad Younas, Naveed Imran
{"title":"启用人工智能:使用毫米波 (mmWave) 传感器进行基于物联网的新型假币检测","authors":"Fahim Niaz, Jian Zhang, Muhammad Khalid, Kashif Naseer Qureshi, Yang Zheng, Muhammad Younas, Naveed Imran","doi":"10.1007/s00607-024-01300-2","DOIUrl":null,"url":null,"abstract":"<p>In recent years, the significance of millimeter wave sensors has achieved a paramount role, especially in the non-invasive and ubiquitous analysis of various materials and objects. This paper introduces a novel IoT-based fake currency detection using millimeter wave (mmWave) that leverages machine and deep learning algorithms for the detection of fake and genuine currency based on their distinct sensor reflections. To gather these reflections or signatures from different currency notes, we utilize multiple receiving (<i>RX</i>) antennae of the radar sensor module. Our proposed framework encompasses three different approaches for genuine and fake currency detection, Convolutional Neural Network (CNN), k-nearest Neighbor (k-NN), and Transfer Learning Technique (TLT). After extensive experiments, the proposed framework exhibits impressive accuracy and obtained classification accuracy of 96%, 94%, and 98% for CNN, k-NN, and TLT in distinguishing 10 different currency notes using radar signals.</p>","PeriodicalId":10718,"journal":{"name":"Computing","volume":"1 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI enabled: a novel IoT-based fake currency detection using millimeter wave (mmWave) sensor\",\"authors\":\"Fahim Niaz, Jian Zhang, Muhammad Khalid, Kashif Naseer Qureshi, Yang Zheng, Muhammad Younas, Naveed Imran\",\"doi\":\"10.1007/s00607-024-01300-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In recent years, the significance of millimeter wave sensors has achieved a paramount role, especially in the non-invasive and ubiquitous analysis of various materials and objects. This paper introduces a novel IoT-based fake currency detection using millimeter wave (mmWave) that leverages machine and deep learning algorithms for the detection of fake and genuine currency based on their distinct sensor reflections. To gather these reflections or signatures from different currency notes, we utilize multiple receiving (<i>RX</i>) antennae of the radar sensor module. Our proposed framework encompasses three different approaches for genuine and fake currency detection, Convolutional Neural Network (CNN), k-nearest Neighbor (k-NN), and Transfer Learning Technique (TLT). After extensive experiments, the proposed framework exhibits impressive accuracy and obtained classification accuracy of 96%, 94%, and 98% for CNN, k-NN, and TLT in distinguishing 10 different currency notes using radar signals.</p>\",\"PeriodicalId\":10718,\"journal\":{\"name\":\"Computing\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00607-024-01300-2\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00607-024-01300-2","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

近年来,毫米波传感器发挥了至关重要的作用,尤其是在对各种材料和物体进行无创和无处不在的分析方面。本文介绍了一种新颖的基于物联网的毫米波(mmWave)假币检测方法,该方法利用机器和深度学习算法,根据不同传感器的反射来检测假币和真币。为了收集不同纸币的反射或特征,我们利用了雷达传感器模块的多个接收(RX)天线。我们提出的框架包括三种不同的真假货币检测方法:卷积神经网络(CNN)、k-近邻(k-NN)和迁移学习技术(TLT)。经过大量实验,所提出的框架表现出令人印象深刻的准确性,在使用雷达信号区分 10 种不同纸币时,CNN、k-NN 和 TLT 的分类准确率分别达到 96%、94% 和 98%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AI enabled: a novel IoT-based fake currency detection using millimeter wave (mmWave) sensor

In recent years, the significance of millimeter wave sensors has achieved a paramount role, especially in the non-invasive and ubiquitous analysis of various materials and objects. This paper introduces a novel IoT-based fake currency detection using millimeter wave (mmWave) that leverages machine and deep learning algorithms for the detection of fake and genuine currency based on their distinct sensor reflections. To gather these reflections or signatures from different currency notes, we utilize multiple receiving (RX) antennae of the radar sensor module. Our proposed framework encompasses three different approaches for genuine and fake currency detection, Convolutional Neural Network (CNN), k-nearest Neighbor (k-NN), and Transfer Learning Technique (TLT). After extensive experiments, the proposed framework exhibits impressive accuracy and obtained classification accuracy of 96%, 94%, and 98% for CNN, k-NN, and TLT in distinguishing 10 different currency notes using radar signals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computing
Computing 工程技术-计算机:理论方法
CiteScore
8.20
自引率
2.70%
发文量
107
审稿时长
3 months
期刊介绍: Computing publishes original papers, short communications and surveys on all fields of computing. The contributions should be written in English and may be of theoretical or applied nature, the essential criteria are computational relevance and systematic foundation of results.
期刊最新文献
Mapping and just-in-time traffic congestion mitigation for emergency vehicles in smart cities Fog intelligence for energy efficient management in smart street lamps Contextual authentication of users and devices using machine learning Multi-objective service composition optimization problem in IoT for agriculture 4.0 Robust evaluation of GPU compute instances for HPC and AI in the cloud: a TOPSIS approach with sensitivity, bootstrapping, and non-parametric analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1