Lina Aoyama, Lucas Silva, Stella M. Copeland, Rory C. O'Connor, Lauren M. Hallett
{"title":"大盆地牧场干旱条件下原产地表现的年际变化","authors":"Lina Aoyama, Lucas Silva, Stella M. Copeland, Rory C. O'Connor, Lauren M. Hallett","doi":"10.1111/rec.14210","DOIUrl":null,"url":null,"abstract":"Rapid climate change poses a fundamental challenge to seed sourcing in restoration. While local provenancing is a common practice in restoration, local seeds may not survive or persist under future climate conditions. Alternative provenancing strategies, such as climate‐adjusted provenancing, that mix local seeds with non‐local seeds aim to increase the buffering capacity of restored populations. We hypothesized that seeds sourced from warmer and drier sites have higher seedling performance under drought than seeds sourced from cooler and wetter sites. We conducted a common garden experiment in a Great Basin rangeland where more frequent, severe drought events are expected to increase in the future. We sourced Bottlebrush squirreltail (<jats:italic>Elymus elymoides</jats:italic> [Raf.] Swezey) seeds from six locations along an aridity gradient and sowed them under three rainfall scenarios: ambient, moderate drought, and severe drought. We found strong interannual variation in seedling recruitment. In 1 year, some provenances from warmer/drier sites had high emergence and subsequent seedling survival under moderate drought. In another, emergence was low across provenances and rainfall treatments. Two provenances that survived 2 years of moderate drought had divergent seedling traits. Specifically, one had a high germination temperature optimum and high water‐use efficiency, such that it likely avoided freezing and resisted drought, while another had a low germination temperature optimum and low water‐use efficiency, such that it likely tolerated freezing and escaped drought. We highlight that understanding these differences in recruitment and stress coping strategies across provenances is important for creating climate‐adaptive seed mixes in anticipation of future climate conditions.","PeriodicalId":54487,"journal":{"name":"Restoration Ecology","volume":"39 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interannual variation in provenance performance under drought in a Great Basin rangeland\",\"authors\":\"Lina Aoyama, Lucas Silva, Stella M. Copeland, Rory C. O'Connor, Lauren M. Hallett\",\"doi\":\"10.1111/rec.14210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rapid climate change poses a fundamental challenge to seed sourcing in restoration. While local provenancing is a common practice in restoration, local seeds may not survive or persist under future climate conditions. Alternative provenancing strategies, such as climate‐adjusted provenancing, that mix local seeds with non‐local seeds aim to increase the buffering capacity of restored populations. We hypothesized that seeds sourced from warmer and drier sites have higher seedling performance under drought than seeds sourced from cooler and wetter sites. We conducted a common garden experiment in a Great Basin rangeland where more frequent, severe drought events are expected to increase in the future. We sourced Bottlebrush squirreltail (<jats:italic>Elymus elymoides</jats:italic> [Raf.] Swezey) seeds from six locations along an aridity gradient and sowed them under three rainfall scenarios: ambient, moderate drought, and severe drought. We found strong interannual variation in seedling recruitment. In 1 year, some provenances from warmer/drier sites had high emergence and subsequent seedling survival under moderate drought. In another, emergence was low across provenances and rainfall treatments. Two provenances that survived 2 years of moderate drought had divergent seedling traits. Specifically, one had a high germination temperature optimum and high water‐use efficiency, such that it likely avoided freezing and resisted drought, while another had a low germination temperature optimum and low water‐use efficiency, such that it likely tolerated freezing and escaped drought. We highlight that understanding these differences in recruitment and stress coping strategies across provenances is important for creating climate‐adaptive seed mixes in anticipation of future climate conditions.\",\"PeriodicalId\":54487,\"journal\":{\"name\":\"Restoration Ecology\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Restoration Ecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1111/rec.14210\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Restoration Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/rec.14210","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Interannual variation in provenance performance under drought in a Great Basin rangeland
Rapid climate change poses a fundamental challenge to seed sourcing in restoration. While local provenancing is a common practice in restoration, local seeds may not survive or persist under future climate conditions. Alternative provenancing strategies, such as climate‐adjusted provenancing, that mix local seeds with non‐local seeds aim to increase the buffering capacity of restored populations. We hypothesized that seeds sourced from warmer and drier sites have higher seedling performance under drought than seeds sourced from cooler and wetter sites. We conducted a common garden experiment in a Great Basin rangeland where more frequent, severe drought events are expected to increase in the future. We sourced Bottlebrush squirreltail (Elymus elymoides [Raf.] Swezey) seeds from six locations along an aridity gradient and sowed them under three rainfall scenarios: ambient, moderate drought, and severe drought. We found strong interannual variation in seedling recruitment. In 1 year, some provenances from warmer/drier sites had high emergence and subsequent seedling survival under moderate drought. In another, emergence was low across provenances and rainfall treatments. Two provenances that survived 2 years of moderate drought had divergent seedling traits. Specifically, one had a high germination temperature optimum and high water‐use efficiency, such that it likely avoided freezing and resisted drought, while another had a low germination temperature optimum and low water‐use efficiency, such that it likely tolerated freezing and escaped drought. We highlight that understanding these differences in recruitment and stress coping strategies across provenances is important for creating climate‐adaptive seed mixes in anticipation of future climate conditions.
期刊介绍:
Restoration Ecology fosters the exchange of ideas among the many disciplines involved with ecological restoration. Addressing global concerns and communicating them to the international research community and restoration practitioners, the journal is at the forefront of a vital new direction in science, ecology, and policy. Original papers describe experimental, observational, and theoretical studies on terrestrial, marine, and freshwater systems, and are considered without taxonomic bias. Contributions span the natural sciences, including ecological and biological aspects, as well as the restoration of soil, air and water when set in an ecological context; and the social sciences, including cultural, philosophical, political, educational, economic and historical aspects. Edited by a distinguished panel, the journal continues to be a major conduit for researchers to publish their findings in the fight to not only halt ecological damage, but also to ultimately reverse it.