磁声发射技术:无损检测方法、应用和未来展望综述

IF 4.1 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Ndt & E International Pub Date : 2024-06-28 DOI:10.1016/j.ndteint.2024.103171
Zenghua Liu , Wasil Riaz , Yongna Shen , Xiaoran Wang , Cunfu He , Gongtian Shen
{"title":"磁声发射技术:无损检测方法、应用和未来展望综述","authors":"Zenghua Liu ,&nbsp;Wasil Riaz ,&nbsp;Yongna Shen ,&nbsp;Xiaoran Wang ,&nbsp;Cunfu He ,&nbsp;Gongtian Shen","doi":"10.1016/j.ndteint.2024.103171","DOIUrl":null,"url":null,"abstract":"<div><p>The magneto acoustic emission (MAE) technique is an emerging non-destructive testing (NDT) method that has shown potential for defect detection in the bulk of material, proven vital for the safety and integrity of the material. The MAE technique has shown promising results among modern non-destructive testing techniques for ferromagnetic materials. Although MAE technique is a long-established NDT method, it has the potential for further development. This paper provides an in-depth review of MAE signals' physical origin and characteristics, compares them with their counterpart, Magneto Barkhausen Noise (MBN), and explores data acquisition methods and applications, including specific case studies in material defect detection. The research gaps in the MAE technique are discussed, and the paper explores potential developments, highlighting future perspectives and possible improvements.</p></div>","PeriodicalId":18868,"journal":{"name":"Ndt & E International","volume":"146 ","pages":"Article 103171"},"PeriodicalIF":4.1000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magneto acoustic emission technique: A review of methodology, applications, and future prospects in non-destructive testing\",\"authors\":\"Zenghua Liu ,&nbsp;Wasil Riaz ,&nbsp;Yongna Shen ,&nbsp;Xiaoran Wang ,&nbsp;Cunfu He ,&nbsp;Gongtian Shen\",\"doi\":\"10.1016/j.ndteint.2024.103171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The magneto acoustic emission (MAE) technique is an emerging non-destructive testing (NDT) method that has shown potential for defect detection in the bulk of material, proven vital for the safety and integrity of the material. The MAE technique has shown promising results among modern non-destructive testing techniques for ferromagnetic materials. Although MAE technique is a long-established NDT method, it has the potential for further development. This paper provides an in-depth review of MAE signals' physical origin and characteristics, compares them with their counterpart, Magneto Barkhausen Noise (MBN), and explores data acquisition methods and applications, including specific case studies in material defect detection. The research gaps in the MAE technique are discussed, and the paper explores potential developments, highlighting future perspectives and possible improvements.</p></div>\",\"PeriodicalId\":18868,\"journal\":{\"name\":\"Ndt & E International\",\"volume\":\"146 \",\"pages\":\"Article 103171\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ndt & E International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0963869524001361\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ndt & E International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0963869524001361","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

摘要

磁声波发射(MAE)技术是一种新兴的无损检测(NDT)方法,已显示出在大块材料中进行缺陷检测的潜力,被证明对材料的安全性和完整性至关重要。在铁磁材料的现代无损检测技术中,MAE 技术已显示出良好的效果。虽然 MAE 技术是一种历史悠久的无损检测方法,但它仍有进一步发展的潜力。本文深入评述了 MAE 信号的物理来源和特征,将其与对应的磁性巴克豪森噪声(MBN)进行了比较,并探讨了数据采集方法和应用,包括材料缺陷检测中的具体案例研究。文中还讨论了 MAE 技术的研究空白,并探讨了潜在的发展,强调了未来的前景和可能的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Magneto acoustic emission technique: A review of methodology, applications, and future prospects in non-destructive testing

The magneto acoustic emission (MAE) technique is an emerging non-destructive testing (NDT) method that has shown potential for defect detection in the bulk of material, proven vital for the safety and integrity of the material. The MAE technique has shown promising results among modern non-destructive testing techniques for ferromagnetic materials. Although MAE technique is a long-established NDT method, it has the potential for further development. This paper provides an in-depth review of MAE signals' physical origin and characteristics, compares them with their counterpart, Magneto Barkhausen Noise (MBN), and explores data acquisition methods and applications, including specific case studies in material defect detection. The research gaps in the MAE technique are discussed, and the paper explores potential developments, highlighting future perspectives and possible improvements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ndt & E International
Ndt & E International 工程技术-材料科学:表征与测试
CiteScore
7.20
自引率
9.50%
发文量
121
审稿时长
55 days
期刊介绍: NDT&E international publishes peer-reviewed results of original research and development in all categories of the fields of nondestructive testing and evaluation including ultrasonics, electromagnetics, radiography, optical and thermal methods. In addition to traditional NDE topics, the emerging technology area of inspection of civil structures and materials is also emphasized. The journal publishes original papers on research and development of new inspection techniques and methods, as well as on novel and innovative applications of established methods. Papers on NDE sensors and their applications both for inspection and process control, as well as papers describing novel NDE systems for structural health monitoring and their performance in industrial settings are also considered. Other regular features include international news, new equipment and a calendar of forthcoming worldwide meetings. This journal is listed in Current Contents.
期刊最新文献
Characterization of heat-treated bearing rings via measurement of electromagnetic properties for pulsed eddy current evaluation Optimising full waveform inversion with inhomogeneous transducers: Parameters and considerations for successful implementation A simplified procedure for evaluation of damage-depth in concrete exposed to high temperature using the impact-echo method Novel fast full-wavefield modeling of air-coupled surface waves and its implications for non-contact pavement testing A novel damage localization method of Circular Phased Array using Minimum Variance Distortionless Response Beamforming with Autocorrelation Matrix Diagonal Loading
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1