海上风力涡轮机复合桩基动态行为研究

IF 5.6 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL Acta Geotechnica Pub Date : 2024-07-05 DOI:10.1007/s11440-024-02349-1
Zijian Yang, Xinjun Zou, Shun Chen
{"title":"海上风力涡轮机复合桩基动态行为研究","authors":"Zijian Yang,&nbsp;Xinjun Zou,&nbsp;Shun Chen","doi":"10.1007/s11440-024-02349-1","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents an analytical methodology that provides the vibration characteristics of monopile–wheel composite foundation embedded in homogeneous saturated soil, when the top of the foundation is subjected to a harmonic horizontal load. In the proposed frame, the horizontal resistances along the pipe pile due to the vibrations of the outer and inner elastic soil and compressible seawater are considered by using the Biot porous medium theory, plane strain model and radiation wave theory. The closed-form expression of the frictional force caused by the wheel vibration is calculated through the three-dimensional continuum mechanics theory. Based on the Euler beam model, the dynamic governing equations of different pile segments in the composite foundation are simulated as a one-dimensional linear elastic rod. Analytical solutions of dynamic impedances of composite pile in the frequency domain can be derived by virtue of the boundary and continuity conditions. Following the validation of the proposed methodology, the sensitivity of the dynamic response and natural vibration frequency of this innovative foundation to the main geometrical problem parameters is studied. The results show that increasing the wheel radius, wheel thickness and embedded length can improve the dynamic stiffness of the composite foundation, and increase the natural frequency of foundation–soil system simultaneously. Finally, the differences of the dynamic responses between the composite foundation and single pile with the same fabricating cost are discussed in detail, and the corresponding analysis proves the superiority of the composite pile under offshore loading conditions. Meanwhile, the contribution of the friction wheel to the dynamic behavior of composite foundation under different parameters is also investigated.</p></div>","PeriodicalId":49308,"journal":{"name":"Acta Geotechnica","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of the dynamic behavior of a composite pile foundation for offshore wind turbines\",\"authors\":\"Zijian Yang,&nbsp;Xinjun Zou,&nbsp;Shun Chen\",\"doi\":\"10.1007/s11440-024-02349-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents an analytical methodology that provides the vibration characteristics of monopile–wheel composite foundation embedded in homogeneous saturated soil, when the top of the foundation is subjected to a harmonic horizontal load. In the proposed frame, the horizontal resistances along the pipe pile due to the vibrations of the outer and inner elastic soil and compressible seawater are considered by using the Biot porous medium theory, plane strain model and radiation wave theory. The closed-form expression of the frictional force caused by the wheel vibration is calculated through the three-dimensional continuum mechanics theory. Based on the Euler beam model, the dynamic governing equations of different pile segments in the composite foundation are simulated as a one-dimensional linear elastic rod. Analytical solutions of dynamic impedances of composite pile in the frequency domain can be derived by virtue of the boundary and continuity conditions. Following the validation of the proposed methodology, the sensitivity of the dynamic response and natural vibration frequency of this innovative foundation to the main geometrical problem parameters is studied. The results show that increasing the wheel radius, wheel thickness and embedded length can improve the dynamic stiffness of the composite foundation, and increase the natural frequency of foundation–soil system simultaneously. Finally, the differences of the dynamic responses between the composite foundation and single pile with the same fabricating cost are discussed in detail, and the corresponding analysis proves the superiority of the composite pile under offshore loading conditions. Meanwhile, the contribution of the friction wheel to the dynamic behavior of composite foundation under different parameters is also investigated.</p></div>\",\"PeriodicalId\":49308,\"journal\":{\"name\":\"Acta Geotechnica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Geotechnica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11440-024-02349-1\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geotechnica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11440-024-02349-1","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种分析方法,该方法可提供嵌入均质饱和土中的单桩轮复合地基在地基顶部承受谐波水平荷载时的振动特性。在所提出的框架中,利用 Biot 多孔介质理论、平面应变模型和辐射波理论,考虑了内外弹性土和可压缩海水的振动引起的管桩沿水平方向的阻力。通过三维连续介质力学理论计算了车轮振动引起的摩擦力的闭式表达。基于欧拉梁模型,将复合地基中不同桩段的动力控制方程模拟为一维线性弹性杆。通过边界条件和连续性条件,可得出复合材料桩在频域内的动态阻抗解析解。在对所提出的方法进行验证后,研究了这种创新地基的动态响应和自然振动频率对主要几何问题参数的敏感性。结果表明,增加车轮半径、车轮厚度和嵌入长度可以提高复合地基的动态刚度,同时提高地基-土系统的固有频率。最后,详细讨论了相同制造成本下复合地基与单桩动态响应的差异,并通过相应的分析证明了复合桩在海上荷载条件下的优越性。同时,还研究了不同参数下摩擦轮对复合地基动力行为的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of the dynamic behavior of a composite pile foundation for offshore wind turbines

This paper presents an analytical methodology that provides the vibration characteristics of monopile–wheel composite foundation embedded in homogeneous saturated soil, when the top of the foundation is subjected to a harmonic horizontal load. In the proposed frame, the horizontal resistances along the pipe pile due to the vibrations of the outer and inner elastic soil and compressible seawater are considered by using the Biot porous medium theory, plane strain model and radiation wave theory. The closed-form expression of the frictional force caused by the wheel vibration is calculated through the three-dimensional continuum mechanics theory. Based on the Euler beam model, the dynamic governing equations of different pile segments in the composite foundation are simulated as a one-dimensional linear elastic rod. Analytical solutions of dynamic impedances of composite pile in the frequency domain can be derived by virtue of the boundary and continuity conditions. Following the validation of the proposed methodology, the sensitivity of the dynamic response and natural vibration frequency of this innovative foundation to the main geometrical problem parameters is studied. The results show that increasing the wheel radius, wheel thickness and embedded length can improve the dynamic stiffness of the composite foundation, and increase the natural frequency of foundation–soil system simultaneously. Finally, the differences of the dynamic responses between the composite foundation and single pile with the same fabricating cost are discussed in detail, and the corresponding analysis proves the superiority of the composite pile under offshore loading conditions. Meanwhile, the contribution of the friction wheel to the dynamic behavior of composite foundation under different parameters is also investigated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Geotechnica
Acta Geotechnica ENGINEERING, GEOLOGICAL-
CiteScore
9.90
自引率
17.50%
发文量
297
审稿时长
4 months
期刊介绍: Acta Geotechnica is an international journal devoted to the publication and dissemination of basic and applied research in geoengineering – an interdisciplinary field dealing with geomaterials such as soils and rocks. Coverage emphasizes the interplay between geomechanical models and their engineering applications. The journal presents original research papers on fundamental concepts in geomechanics and their novel applications in geoengineering based on experimental, analytical and/or numerical approaches. The main purpose of the journal is to foster understanding of the fundamental mechanisms behind the phenomena and processes in geomaterials, from kilometer-scale problems as they occur in geoscience, and down to the nano-scale, with their potential impact on geoengineering. The journal strives to report and archive progress in the field in a timely manner, presenting research papers, review articles, short notes and letters to the editors.
期刊最新文献
Reducing non-cohesive soil erodibility through enzyme-induced carbonate precipitation Machine learning prediction model for clay electrical conductivity and its application in electroosmosis consolidation Classifying roundness and sphericity of sand particles using CNN regression models to alleviate data imbalance Influence of soil property variability on the lateral displacement of liquefiable ground reinforced by granular columns Simulation of hydro-deformation coupling problem in unsaturated porous media using exponential SWCC and hybrid improved iteration method with multigrid and multistep preconditioner
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1