{"title":"基于芳樟醇的阿卡布替尼口服纳米乳液可改善其口服生物利用度和在 T 淋巴母细胞系中的体外抗癌潜力","authors":"Arti Shettiwar, Ujala Gupta, Essha Chatterjee, Bhagyashree Patra, Mayur Aalhate, Srushti Mahajan, Indrani Maji, Neelesh Kumar Mehra, Santosh Kumar Guru, Pankaj Kumar Singh","doi":"10.1007/s00396-024-05290-7","DOIUrl":null,"url":null,"abstract":"<div><p>Acalabrutinib (ACL) was approved in the United States in the year of 2017 and 2019 for the treatment of chronic lymphocytic leukemia (CLL) and relapsed mantle cell lymphoma (MCL). Low-energy method was employed to curate nanoemulsion (NE) for which various components were screened through solubility study and optimization was done through a pseudo-ternary phase diagram. The NE was evaluated for its droplet size, polydispersity index (PDI), transmittance, morphology, rheology, robustness to dilution, the effect of pH, storage stability, and ex vivo permeation study. The optimized ACL-NE demonstrated an appropriate droplet size (94.35 ± 0.3 nm), PDI (0.27 ± 0.03), and an entrapment efficiency of 67.38 ± 2.69%. It showed non-Newtonian (shear thinning behavior) due to reduced viscosity with an increasing shear rate. The apparent permeability was 3.09-fold higher for ACL-NE than ACL suspension. An in vitro drug release study depicted a higher release of ACL (71.10 ± 10.99%) from the optimized NE in a sustained fashion than the suspension (49.01 ± 1.65%). A dose-dependent cytotoxicity was observed in MOLT-4 and HH-cell lines where the IC50 values of ACL were 5.62- and 16.49-fold reduced when encapsulated in oil globules for the respective cell lines. Blank-NE did cause a reduction in cellular toxicity at higher doses. A 7.31- and 5.1-fold increase in <i>C</i><sub>max</sub> and bioavailability was noted between ACL suspension and ACL-NE.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":"302 10","pages":"1491 - 1511"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oral linalool-based nanoemulsion of acalabrutinib for ameliorating its oral bioavailability and in vitro anticancer potential in T lymphoblast cell lines\",\"authors\":\"Arti Shettiwar, Ujala Gupta, Essha Chatterjee, Bhagyashree Patra, Mayur Aalhate, Srushti Mahajan, Indrani Maji, Neelesh Kumar Mehra, Santosh Kumar Guru, Pankaj Kumar Singh\",\"doi\":\"10.1007/s00396-024-05290-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Acalabrutinib (ACL) was approved in the United States in the year of 2017 and 2019 for the treatment of chronic lymphocytic leukemia (CLL) and relapsed mantle cell lymphoma (MCL). Low-energy method was employed to curate nanoemulsion (NE) for which various components were screened through solubility study and optimization was done through a pseudo-ternary phase diagram. The NE was evaluated for its droplet size, polydispersity index (PDI), transmittance, morphology, rheology, robustness to dilution, the effect of pH, storage stability, and ex vivo permeation study. The optimized ACL-NE demonstrated an appropriate droplet size (94.35 ± 0.3 nm), PDI (0.27 ± 0.03), and an entrapment efficiency of 67.38 ± 2.69%. It showed non-Newtonian (shear thinning behavior) due to reduced viscosity with an increasing shear rate. The apparent permeability was 3.09-fold higher for ACL-NE than ACL suspension. An in vitro drug release study depicted a higher release of ACL (71.10 ± 10.99%) from the optimized NE in a sustained fashion than the suspension (49.01 ± 1.65%). A dose-dependent cytotoxicity was observed in MOLT-4 and HH-cell lines where the IC50 values of ACL were 5.62- and 16.49-fold reduced when encapsulated in oil globules for the respective cell lines. Blank-NE did cause a reduction in cellular toxicity at higher doses. A 7.31- and 5.1-fold increase in <i>C</i><sub>max</sub> and bioavailability was noted between ACL suspension and ACL-NE.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":520,\"journal\":{\"name\":\"Colloid and Polymer Science\",\"volume\":\"302 10\",\"pages\":\"1491 - 1511\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloid and Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00396-024-05290-7\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid and Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00396-024-05290-7","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Oral linalool-based nanoemulsion of acalabrutinib for ameliorating its oral bioavailability and in vitro anticancer potential in T lymphoblast cell lines
Acalabrutinib (ACL) was approved in the United States in the year of 2017 and 2019 for the treatment of chronic lymphocytic leukemia (CLL) and relapsed mantle cell lymphoma (MCL). Low-energy method was employed to curate nanoemulsion (NE) for which various components were screened through solubility study and optimization was done through a pseudo-ternary phase diagram. The NE was evaluated for its droplet size, polydispersity index (PDI), transmittance, morphology, rheology, robustness to dilution, the effect of pH, storage stability, and ex vivo permeation study. The optimized ACL-NE demonstrated an appropriate droplet size (94.35 ± 0.3 nm), PDI (0.27 ± 0.03), and an entrapment efficiency of 67.38 ± 2.69%. It showed non-Newtonian (shear thinning behavior) due to reduced viscosity with an increasing shear rate. The apparent permeability was 3.09-fold higher for ACL-NE than ACL suspension. An in vitro drug release study depicted a higher release of ACL (71.10 ± 10.99%) from the optimized NE in a sustained fashion than the suspension (49.01 ± 1.65%). A dose-dependent cytotoxicity was observed in MOLT-4 and HH-cell lines where the IC50 values of ACL were 5.62- and 16.49-fold reduced when encapsulated in oil globules for the respective cell lines. Blank-NE did cause a reduction in cellular toxicity at higher doses. A 7.31- and 5.1-fold increase in Cmax and bioavailability was noted between ACL suspension and ACL-NE.
期刊介绍:
Colloid and Polymer Science - a leading international journal of longstanding tradition - is devoted to colloid and polymer science and its interdisciplinary interactions. As such, it responds to a demand which has lost none of its actuality as revealed in the trends of contemporary materials science.