通过机械合金化增强微波吸收的微观结构调整非晶 Co2FeGe 纳米薄片

IF 1.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Physica Status Solidi A-applications and Materials Science Pub Date : 2024-07-05 DOI:10.1002/pssa.202400317
Yifeng Zhang, Yu Gao, Zekun Zhang, Gaohe Zhang, Baojuan Kang, Rongrong Jia, Junyi Ge, Shixun Cao, Jincang Zhang, Zhenjie Feng
{"title":"通过机械合金化增强微波吸收的微观结构调整非晶 Co2FeGe 纳米薄片","authors":"Yifeng Zhang, Yu Gao, Zekun Zhang, Gaohe Zhang, Baojuan Kang, Rongrong Jia, Junyi Ge, Shixun Cao, Jincang Zhang, Zhenjie Feng","doi":"10.1002/pssa.202400317","DOIUrl":null,"url":null,"abstract":"Herein, a simple strategy for fabricating amorphous Co<jats:sub>2</jats:sub>FeGe nanoflakes by tuning the milling time with mechanical alloying method to enhance the microwave absorption capabilities is presented. These alloys exhibit soft magnetic properties characterized by high saturation magnetization and low coercivity. The enhancement of polarization and resonance effects, leading to improved magnetic and dielectric loss, is attributed to the refinement of crystalline size and the substantial aspect ratio of flaky particles. The minimum reflection loss reaches −48.6 dB at 4.92 GHz with an effective absorption bandwidth of 2.88 GHz in the C‐band. Due to its high Curie temperature, Co<jats:sub>2</jats:sub>FeGe exhibits considerable potential for maintaining highly efficient microwave absorption capabilities under high‐temperature conditions, thereby providing a novel perspective and technical means for the development of new high‐temperature‐resistant, high‐performance microwave‐absorbing materials. This is expected to play a significant role in future high‐temperature electronic countermeasure systems.","PeriodicalId":20074,"journal":{"name":"Physica Status Solidi A-applications and Materials Science","volume":"107 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructure‐Tuned Amorphous Co2FeGe Nanoflakes for Enhanced Microwave Absorption Via Mechanical Alloying\",\"authors\":\"Yifeng Zhang, Yu Gao, Zekun Zhang, Gaohe Zhang, Baojuan Kang, Rongrong Jia, Junyi Ge, Shixun Cao, Jincang Zhang, Zhenjie Feng\",\"doi\":\"10.1002/pssa.202400317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Herein, a simple strategy for fabricating amorphous Co<jats:sub>2</jats:sub>FeGe nanoflakes by tuning the milling time with mechanical alloying method to enhance the microwave absorption capabilities is presented. These alloys exhibit soft magnetic properties characterized by high saturation magnetization and low coercivity. The enhancement of polarization and resonance effects, leading to improved magnetic and dielectric loss, is attributed to the refinement of crystalline size and the substantial aspect ratio of flaky particles. The minimum reflection loss reaches −48.6 dB at 4.92 GHz with an effective absorption bandwidth of 2.88 GHz in the C‐band. Due to its high Curie temperature, Co<jats:sub>2</jats:sub>FeGe exhibits considerable potential for maintaining highly efficient microwave absorption capabilities under high‐temperature conditions, thereby providing a novel perspective and technical means for the development of new high‐temperature‐resistant, high‐performance microwave‐absorbing materials. This is expected to play a significant role in future high‐temperature electronic countermeasure systems.\",\"PeriodicalId\":20074,\"journal\":{\"name\":\"Physica Status Solidi A-applications and Materials Science\",\"volume\":\"107 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica Status Solidi A-applications and Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/pssa.202400317\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi A-applications and Materials Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/pssa.202400317","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种通过机械合金化方法调整研磨时间来制造非晶 Co2FeGe 纳米片从而增强微波吸收能力的简单策略。这些合金具有高饱和磁化率和低矫顽力的软磁特性。极化和共振效应的增强导致磁损和介损的改善,这要归功于晶体尺寸的细化和片状颗粒的高宽比。在 4.92 GHz 频率下,最小反射损耗达到 -48.6 dB,在 C 波段的有效吸收带宽为 2.88 GHz。由于 Co2FeGe 的居里温度较高,它在高温条件下保持高效微波吸收能力的潜力相当大,从而为开发新型耐高温、高性能微波吸收材料提供了新的视角和技术手段。这有望在未来的高温电子对抗系统中发挥重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microstructure‐Tuned Amorphous Co2FeGe Nanoflakes for Enhanced Microwave Absorption Via Mechanical Alloying
Herein, a simple strategy for fabricating amorphous Co2FeGe nanoflakes by tuning the milling time with mechanical alloying method to enhance the microwave absorption capabilities is presented. These alloys exhibit soft magnetic properties characterized by high saturation magnetization and low coercivity. The enhancement of polarization and resonance effects, leading to improved magnetic and dielectric loss, is attributed to the refinement of crystalline size and the substantial aspect ratio of flaky particles. The minimum reflection loss reaches −48.6 dB at 4.92 GHz with an effective absorption bandwidth of 2.88 GHz in the C‐band. Due to its high Curie temperature, Co2FeGe exhibits considerable potential for maintaining highly efficient microwave absorption capabilities under high‐temperature conditions, thereby providing a novel perspective and technical means for the development of new high‐temperature‐resistant, high‐performance microwave‐absorbing materials. This is expected to play a significant role in future high‐temperature electronic countermeasure systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
CiteScore
3.70
自引率
5.00%
发文量
393
审稿时长
2 months
期刊介绍: The physica status solidi (pss) journal group is devoted to the thorough peer review and the rapid publication of new and important results in all fields of solid state and materials physics, from basic science to applications and devices. Among the largest and most established international publications, the pss journals publish reviews, letters and original articles, as regular content as well as in special issues and topical sections.
期刊最新文献
Plasma‐Assisted Preparation and Properties of Chitosan‐Based Magnetic Hydrogels Performance Enhancement of SnS Solar Cell with Tungsten Disulfide Electron Transport Layer and Molybdenum Trioxide Hole Transport Layer Advancements in Piezoelectric‐Enabled Devices for Optical Communication Structural Distortions and Short‐Range Magnetism in a Honeycomb Iridate Cu3ZnIr2O6 Enhancing Reliability and Regeneration of Single Passivated Emitter Rear Contact Solar Cell Modules through Alternating Current Power Application to Mitigate Light and Elevated Temperature‐Induced Degradation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1