Alex J. Vernon, Sebastian Golat, Claire Rigouzzo, Eugene A. Lim, Francisco J. Rodríguez-Fortuño
{"title":"分解光的自旋角动量密度","authors":"Alex J. Vernon, Sebastian Golat, Claire Rigouzzo, Eugene A. Lim, Francisco J. Rodríguez-Fortuño","doi":"10.1038/s41377-024-01447-9","DOIUrl":null,"url":null,"abstract":"<p>Light carries intrinsic spin angular momentum (SAM) when the electric or magnetic field vector rotates over time. A familiar vector equation calculates the direction of light’s SAM density using the right-hand rule with reference to the electric and magnetic polarisation ellipses. Using Maxwell’s equations, this vector equation can be decomposed into a sum of two distinct terms, akin to the well-known Poynting vector decomposition into orbital and spin currents. We present the first general study of this spin decomposition, showing that the two terms, which we call canonical and Poynting spin, are chiral analogies to the canonical and spin momenta of light in its interaction with matter. Like canonical momentum, canonical spin is directly measurable. Both canonical and Poynting spin incorporate spatial variation of the electric and magnetic fields and are influenced by optical vortices. The decomposition allows us to show that a linearly polarised vortex beam, which has no total SAM, can nevertheless exert longitudinal chiral pressure due to equal and opposite canonical and Poynting spins.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":null,"pages":null},"PeriodicalIF":20.6000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A decomposition of light’s spin angular momentum density\",\"authors\":\"Alex J. Vernon, Sebastian Golat, Claire Rigouzzo, Eugene A. Lim, Francisco J. Rodríguez-Fortuño\",\"doi\":\"10.1038/s41377-024-01447-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Light carries intrinsic spin angular momentum (SAM) when the electric or magnetic field vector rotates over time. A familiar vector equation calculates the direction of light’s SAM density using the right-hand rule with reference to the electric and magnetic polarisation ellipses. Using Maxwell’s equations, this vector equation can be decomposed into a sum of two distinct terms, akin to the well-known Poynting vector decomposition into orbital and spin currents. We present the first general study of this spin decomposition, showing that the two terms, which we call canonical and Poynting spin, are chiral analogies to the canonical and spin momenta of light in its interaction with matter. Like canonical momentum, canonical spin is directly measurable. Both canonical and Poynting spin incorporate spatial variation of the electric and magnetic fields and are influenced by optical vortices. The decomposition allows us to show that a linearly polarised vortex beam, which has no total SAM, can nevertheless exert longitudinal chiral pressure due to equal and opposite canonical and Poynting spins.</p>\",\"PeriodicalId\":18069,\"journal\":{\"name\":\"Light-Science & Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":20.6000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Light-Science & Applications\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1038/s41377-024-01447-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-024-01447-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
摘要
当电场或磁场矢量随时间旋转时,光会携带固有的自旋角动量(SAM)。我们熟悉的矢量方程利用右手定则,参照电偏振椭圆和磁偏振椭圆计算光的自旋角动量密度方向。利用麦克斯韦方程,这个矢量方程可以分解为两个不同项的总和,类似于著名的波因定矢量分解为轨道电流和自旋电流。我们首次对这种自旋分解进行了一般性研究,表明这两个项(我们称之为规范自旋和波因廷自旋)是光在与物质相互作用时的规范动量和自旋矩的手性类比。与规范动量一样,规范自旋也是可以直接测量的。规范自旋和波因廷自旋都包含电场和磁场的空间变化,并受光学涡旋的影响。通过分解,我们可以证明,没有总 SAM 的线性偏振涡旋光束,也会因等量且相反的 Canonical 自旋和 Poynting 自旋而产生纵向手性压力。
A decomposition of light’s spin angular momentum density
Light carries intrinsic spin angular momentum (SAM) when the electric or magnetic field vector rotates over time. A familiar vector equation calculates the direction of light’s SAM density using the right-hand rule with reference to the electric and magnetic polarisation ellipses. Using Maxwell’s equations, this vector equation can be decomposed into a sum of two distinct terms, akin to the well-known Poynting vector decomposition into orbital and spin currents. We present the first general study of this spin decomposition, showing that the two terms, which we call canonical and Poynting spin, are chiral analogies to the canonical and spin momenta of light in its interaction with matter. Like canonical momentum, canonical spin is directly measurable. Both canonical and Poynting spin incorporate spatial variation of the electric and magnetic fields and are influenced by optical vortices. The decomposition allows us to show that a linearly polarised vortex beam, which has no total SAM, can nevertheless exert longitudinal chiral pressure due to equal and opposite canonical and Poynting spins.