{"title":"优化仿射空间归一化的三步 \"蛮力 \"法","authors":"Marko Wilke","doi":"10.3389/fncom.2024.1367148","DOIUrl":null,"url":null,"abstract":"The first step in spatial normalization of magnetic resonance (MR) images commonly is an affine transformation, which may be vulnerable to image imperfections (such as inhomogeneities or “unusual” heads). Additionally, common software solutions use internal starting estimates to allow for a more efficient computation, which may pose a problem in datasets not conforming to these assumptions (such as those from children). In this technical note, three main questions were addressed: one, does the affine spatial normalization step implemented in SPM12 benefit from an initial inhomogeneity correction. Two, does using a complexity-reduced image version improve robustness when matching “unusual” images. And three, can a blind “brute-force” application of a wide range of parameter combinations improve the affine fit for unusual datasets in particular. A large database of 2081 image datasets was used, covering the full age range from birth to old age. All analyses were performed in Matlab. Results demonstrate that an initial removal of image inhomogeneities improved the affine fit particularly when more inhomogeneity was present. Further, using a complexity-reduced input image also improved the affine fit and was beneficial in younger children in particular. Finally, blindly exploring a very wide parameter space resulted in a better fit for the vast majority of subjects, but again particularly so in infants and young children. In summary, the suggested modifications were shown to improve the affine transformation in the large majority of datasets in general, and in children in particular. The changes can easily be implemented into SPM12.","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A three-step, “brute-force” approach toward optimized affine spatial normalization\",\"authors\":\"Marko Wilke\",\"doi\":\"10.3389/fncom.2024.1367148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The first step in spatial normalization of magnetic resonance (MR) images commonly is an affine transformation, which may be vulnerable to image imperfections (such as inhomogeneities or “unusual” heads). Additionally, common software solutions use internal starting estimates to allow for a more efficient computation, which may pose a problem in datasets not conforming to these assumptions (such as those from children). In this technical note, three main questions were addressed: one, does the affine spatial normalization step implemented in SPM12 benefit from an initial inhomogeneity correction. Two, does using a complexity-reduced image version improve robustness when matching “unusual” images. And three, can a blind “brute-force” application of a wide range of parameter combinations improve the affine fit for unusual datasets in particular. A large database of 2081 image datasets was used, covering the full age range from birth to old age. All analyses were performed in Matlab. Results demonstrate that an initial removal of image inhomogeneities improved the affine fit particularly when more inhomogeneity was present. Further, using a complexity-reduced input image also improved the affine fit and was beneficial in younger children in particular. Finally, blindly exploring a very wide parameter space resulted in a better fit for the vast majority of subjects, but again particularly so in infants and young children. In summary, the suggested modifications were shown to improve the affine transformation in the large majority of datasets in general, and in children in particular. The changes can easily be implemented into SPM12.\",\"PeriodicalId\":12363,\"journal\":{\"name\":\"Frontiers in Computational Neuroscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Computational Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fncom.2024.1367148\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncom.2024.1367148","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
A three-step, “brute-force” approach toward optimized affine spatial normalization
The first step in spatial normalization of magnetic resonance (MR) images commonly is an affine transformation, which may be vulnerable to image imperfections (such as inhomogeneities or “unusual” heads). Additionally, common software solutions use internal starting estimates to allow for a more efficient computation, which may pose a problem in datasets not conforming to these assumptions (such as those from children). In this technical note, three main questions were addressed: one, does the affine spatial normalization step implemented in SPM12 benefit from an initial inhomogeneity correction. Two, does using a complexity-reduced image version improve robustness when matching “unusual” images. And three, can a blind “brute-force” application of a wide range of parameter combinations improve the affine fit for unusual datasets in particular. A large database of 2081 image datasets was used, covering the full age range from birth to old age. All analyses were performed in Matlab. Results demonstrate that an initial removal of image inhomogeneities improved the affine fit particularly when more inhomogeneity was present. Further, using a complexity-reduced input image also improved the affine fit and was beneficial in younger children in particular. Finally, blindly exploring a very wide parameter space resulted in a better fit for the vast majority of subjects, but again particularly so in infants and young children. In summary, the suggested modifications were shown to improve the affine transformation in the large majority of datasets in general, and in children in particular. The changes can easily be implemented into SPM12.
期刊介绍:
Frontiers in Computational Neuroscience is a first-tier electronic journal devoted to promoting theoretical modeling of brain function and fostering interdisciplinary interactions between theoretical and experimental neuroscience. Progress in understanding the amazing capabilities of the brain is still limited, and we believe that it will only come with deep theoretical thinking and mutually stimulating cooperation between different disciplines and approaches. We therefore invite original contributions on a wide range of topics that present the fruits of such cooperation, or provide stimuli for future alliances. We aim to provide an interactive forum for cutting-edge theoretical studies of the nervous system, and for promulgating the best theoretical research to the broader neuroscience community. Models of all styles and at all levels are welcome, from biophysically motivated realistic simulations of neurons and synapses to high-level abstract models of inference and decision making. While the journal is primarily focused on theoretically based and driven research, we welcome experimental studies that validate and test theoretical conclusions.
Also: comp neuro