Nefta-Eleftheria Votsi, Orestis Speyer, Danai-Eleni Michailidou, Athanasios Koukoulis, Charalampos Chatzidiakos, Ine Vandecasteele, Christiana Photiadou, Jose Miguel Rubio Iglesias, Jean-Philippe Aurambout, Evangelos Gerasopoulos
{"title":"城市树木生物多样性指数:基于树木清单的城市气候适应措施","authors":"Nefta-Eleftheria Votsi, Orestis Speyer, Danai-Eleni Michailidou, Athanasios Koukoulis, Charalampos Chatzidiakos, Ine Vandecasteele, Christiana Photiadou, Jose Miguel Rubio Iglesias, Jean-Philippe Aurambout, Evangelos Gerasopoulos","doi":"10.3390/environments11070144","DOIUrl":null,"url":null,"abstract":"A historically large percentage of the world’s population has moved to urban areas in the past few decades, causing various negative effects for the environment, such as air, noise, water, and light pollution; land degradation; and biodiversity loss. Under the current climate crisis, cities are anticipated to play an essential part in adaptation strategies to extreme atmospheric events. This study aims at developing indicators at an urban scale that can highlight adaptation progress by investigating relevant data (especially in situ) and statistics at a pan-European level in support of the EU’s strategy for adapting to the impacts of climate change. The proposed indicator, Urban Biodiversity Indicator for Trees (UBI4T), which can be derived from city tree inventories, assesses one essential component of urban biodiversity by computing the proportion of native, alien, invasive, and toxic tree species spatially across a city. According to our findings (applying the UBI4T for Amsterdam and exploring its policy potential for Barcelona), the UBI4T can offer crucial information for decision and policy makers, as well as stakeholders of a city, with the aim of conducting dedicated and effective strategic initiatives to restore, improve, and protect nature in the urban environment, thus contributing to adaptation and resilience to extreme atmospheric events in cities.","PeriodicalId":11886,"journal":{"name":"Environments","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Urban Biodiversity Index for Trees: A Climate Adaptation Measure for Cities Based on Tree Inventories\",\"authors\":\"Nefta-Eleftheria Votsi, Orestis Speyer, Danai-Eleni Michailidou, Athanasios Koukoulis, Charalampos Chatzidiakos, Ine Vandecasteele, Christiana Photiadou, Jose Miguel Rubio Iglesias, Jean-Philippe Aurambout, Evangelos Gerasopoulos\",\"doi\":\"10.3390/environments11070144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A historically large percentage of the world’s population has moved to urban areas in the past few decades, causing various negative effects for the environment, such as air, noise, water, and light pollution; land degradation; and biodiversity loss. Under the current climate crisis, cities are anticipated to play an essential part in adaptation strategies to extreme atmospheric events. This study aims at developing indicators at an urban scale that can highlight adaptation progress by investigating relevant data (especially in situ) and statistics at a pan-European level in support of the EU’s strategy for adapting to the impacts of climate change. The proposed indicator, Urban Biodiversity Indicator for Trees (UBI4T), which can be derived from city tree inventories, assesses one essential component of urban biodiversity by computing the proportion of native, alien, invasive, and toxic tree species spatially across a city. According to our findings (applying the UBI4T for Amsterdam and exploring its policy potential for Barcelona), the UBI4T can offer crucial information for decision and policy makers, as well as stakeholders of a city, with the aim of conducting dedicated and effective strategic initiatives to restore, improve, and protect nature in the urban environment, thus contributing to adaptation and resilience to extreme atmospheric events in cities.\",\"PeriodicalId\":11886,\"journal\":{\"name\":\"Environments\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/environments11070144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/environments11070144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Urban Biodiversity Index for Trees: A Climate Adaptation Measure for Cities Based on Tree Inventories
A historically large percentage of the world’s population has moved to urban areas in the past few decades, causing various negative effects for the environment, such as air, noise, water, and light pollution; land degradation; and biodiversity loss. Under the current climate crisis, cities are anticipated to play an essential part in adaptation strategies to extreme atmospheric events. This study aims at developing indicators at an urban scale that can highlight adaptation progress by investigating relevant data (especially in situ) and statistics at a pan-European level in support of the EU’s strategy for adapting to the impacts of climate change. The proposed indicator, Urban Biodiversity Indicator for Trees (UBI4T), which can be derived from city tree inventories, assesses one essential component of urban biodiversity by computing the proportion of native, alien, invasive, and toxic tree species spatially across a city. According to our findings (applying the UBI4T for Amsterdam and exploring its policy potential for Barcelona), the UBI4T can offer crucial information for decision and policy makers, as well as stakeholders of a city, with the aim of conducting dedicated and effective strategic initiatives to restore, improve, and protect nature in the urban environment, thus contributing to adaptation and resilience to extreme atmospheric events in cities.