{"title":"可破碎颗粒边角对钙质砂中隆起桩-土相互作用行为的影响分析","authors":"Yu Peng, Zhen-Yu Yin, Fengchun Yang, Liming Qu, Xuanming Ding","doi":"10.1007/s11440-024-02367-z","DOIUrl":null,"url":null,"abstract":"<p>The effect of breakable particle corners is often overlooked in research on pile–soil interaction, which hinders the understanding of the uplift pile behaviors in calcareous sand. This research examines the breakable corner effects on uplift pile–soil interaction in calcareous sand from macro to micro, through model tests and coupled discrete element method–finite difference method. Results revealed that compared to that in silica sand, the higher bearing capacity and relatively abrupt failure behavior of uplift piles in calcareous sands were attributed to the corner interlocking effect and corner breakage effect, respectively. The unstable load transmission along piles in calcareous sand was thoroughly explained by a coupled effect of corner interlocking and breakage. Furthermore, the reduction in effective contacts and alterations in soil skeletons were identified as critical factors contributing to the distinctive soil behaviors in calcareous sand. Moreover, the relative sliding distance of particles was found to be the key factor in determining the amount of corner breakages due to stress concentration at corners. Lastly, a positive feedback loop involving corner breakage effects was proposed, successfully explaining the distinctive phenomenon of uplift piles in calcareous sand. This study provides new perspectives to clarify distinctive pile–soil interaction behaviors in calcareous sand.</p>","PeriodicalId":49308,"journal":{"name":"Acta Geotechnica","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of the effect of breakable particle corners on uplift pile–soil interaction behaviors in calcareous sand\",\"authors\":\"Yu Peng, Zhen-Yu Yin, Fengchun Yang, Liming Qu, Xuanming Ding\",\"doi\":\"10.1007/s11440-024-02367-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The effect of breakable particle corners is often overlooked in research on pile–soil interaction, which hinders the understanding of the uplift pile behaviors in calcareous sand. This research examines the breakable corner effects on uplift pile–soil interaction in calcareous sand from macro to micro, through model tests and coupled discrete element method–finite difference method. Results revealed that compared to that in silica sand, the higher bearing capacity and relatively abrupt failure behavior of uplift piles in calcareous sands were attributed to the corner interlocking effect and corner breakage effect, respectively. The unstable load transmission along piles in calcareous sand was thoroughly explained by a coupled effect of corner interlocking and breakage. Furthermore, the reduction in effective contacts and alterations in soil skeletons were identified as critical factors contributing to the distinctive soil behaviors in calcareous sand. Moreover, the relative sliding distance of particles was found to be the key factor in determining the amount of corner breakages due to stress concentration at corners. Lastly, a positive feedback loop involving corner breakage effects was proposed, successfully explaining the distinctive phenomenon of uplift piles in calcareous sand. This study provides new perspectives to clarify distinctive pile–soil interaction behaviors in calcareous sand.</p>\",\"PeriodicalId\":49308,\"journal\":{\"name\":\"Acta Geotechnica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Geotechnica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11440-024-02367-z\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geotechnica","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11440-024-02367-z","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Analysis of the effect of breakable particle corners on uplift pile–soil interaction behaviors in calcareous sand
The effect of breakable particle corners is often overlooked in research on pile–soil interaction, which hinders the understanding of the uplift pile behaviors in calcareous sand. This research examines the breakable corner effects on uplift pile–soil interaction in calcareous sand from macro to micro, through model tests and coupled discrete element method–finite difference method. Results revealed that compared to that in silica sand, the higher bearing capacity and relatively abrupt failure behavior of uplift piles in calcareous sands were attributed to the corner interlocking effect and corner breakage effect, respectively. The unstable load transmission along piles in calcareous sand was thoroughly explained by a coupled effect of corner interlocking and breakage. Furthermore, the reduction in effective contacts and alterations in soil skeletons were identified as critical factors contributing to the distinctive soil behaviors in calcareous sand. Moreover, the relative sliding distance of particles was found to be the key factor in determining the amount of corner breakages due to stress concentration at corners. Lastly, a positive feedback loop involving corner breakage effects was proposed, successfully explaining the distinctive phenomenon of uplift piles in calcareous sand. This study provides new perspectives to clarify distinctive pile–soil interaction behaviors in calcareous sand.
期刊介绍:
Acta Geotechnica is an international journal devoted to the publication and dissemination of basic and applied research in geoengineering – an interdisciplinary field dealing with geomaterials such as soils and rocks. Coverage emphasizes the interplay between geomechanical models and their engineering applications. The journal presents original research papers on fundamental concepts in geomechanics and their novel applications in geoengineering based on experimental, analytical and/or numerical approaches. The main purpose of the journal is to foster understanding of the fundamental mechanisms behind the phenomena and processes in geomaterials, from kilometer-scale problems as they occur in geoscience, and down to the nano-scale, with their potential impact on geoengineering. The journal strives to report and archive progress in the field in a timely manner, presenting research papers, review articles, short notes and letters to the editors.