IT-SOFC 的高性能热膨胀偏移 LSCF-SZM 阴极

IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Solid State Ionics Pub Date : 2024-07-06 DOI:10.1016/j.ssi.2024.116639
Mengsha Li , Fei Lu , Ruiwei Cui , Lei Shi , Jiefang Wang , Hao He , Jinrui Su , Bin Cai
{"title":"IT-SOFC 的高性能热膨胀偏移 LSCF-SZM 阴极","authors":"Mengsha Li ,&nbsp;Fei Lu ,&nbsp;Ruiwei Cui ,&nbsp;Lei Shi ,&nbsp;Jiefang Wang ,&nbsp;Hao He ,&nbsp;Jinrui Su ,&nbsp;Bin Cai","doi":"10.1016/j.ssi.2024.116639","DOIUrl":null,"url":null,"abstract":"<div><p>One big risk for commercial solid oxide fuel cells (SOFCs) is the potential delamination between cathode and electrolyte layers. It can be effectively alleviated by the thermal expansion offset strategy proposed in 2021, i.e., conventional cathode composited with the negative thermal expansion oxides. Here novel composite cathodes designated as La<sub>0.6</sub>Sr<sub>0.4</sub>Co<sub>0.2</sub>Fe<sub>0.8</sub>O<sub>3-δ</sub> (LSCF)-xSm<sub>0.85</sub>Zn<sub>0.15</sub>MnO<sub>3</sub> (SZM) (x = 0, 5, 10, 15, and 20 wt.%) are developed. Random phase boundaries with apparent lattice distortion are formed between LSCF and SZM phases. The best electrochemical performance is obtained for x = 10%. The corresponding peak power density at 923–723 K is 1.151–0.147 W·cm<sup>−2</sup>, which is 57–69% higher than that (0.731–0.087 W·cm<sup>−2</sup>) for x = 0. More importantly, markedly enhanced long-term and thermal cycling stability is also obtained. Results of electrical conductivity, electrochemical impedance spectroscopy (EIS) and distribution of relaxation time (DRT) results further confirm that improved thermal match between cathode and electrolyte layers should be responsible for the high performance of intermediate temperature SOFCs (IT-SOFCs).</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High performance thermal expansion offset LSCF-SZM cathodes of IT-SOFCs\",\"authors\":\"Mengsha Li ,&nbsp;Fei Lu ,&nbsp;Ruiwei Cui ,&nbsp;Lei Shi ,&nbsp;Jiefang Wang ,&nbsp;Hao He ,&nbsp;Jinrui Su ,&nbsp;Bin Cai\",\"doi\":\"10.1016/j.ssi.2024.116639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>One big risk for commercial solid oxide fuel cells (SOFCs) is the potential delamination between cathode and electrolyte layers. It can be effectively alleviated by the thermal expansion offset strategy proposed in 2021, i.e., conventional cathode composited with the negative thermal expansion oxides. Here novel composite cathodes designated as La<sub>0.6</sub>Sr<sub>0.4</sub>Co<sub>0.2</sub>Fe<sub>0.8</sub>O<sub>3-δ</sub> (LSCF)-xSm<sub>0.85</sub>Zn<sub>0.15</sub>MnO<sub>3</sub> (SZM) (x = 0, 5, 10, 15, and 20 wt.%) are developed. Random phase boundaries with apparent lattice distortion are formed between LSCF and SZM phases. The best electrochemical performance is obtained for x = 10%. The corresponding peak power density at 923–723 K is 1.151–0.147 W·cm<sup>−2</sup>, which is 57–69% higher than that (0.731–0.087 W·cm<sup>−2</sup>) for x = 0. More importantly, markedly enhanced long-term and thermal cycling stability is also obtained. Results of electrical conductivity, electrochemical impedance spectroscopy (EIS) and distribution of relaxation time (DRT) results further confirm that improved thermal match between cathode and electrolyte layers should be responsible for the high performance of intermediate temperature SOFCs (IT-SOFCs).</p></div>\",\"PeriodicalId\":431,\"journal\":{\"name\":\"Solid State Ionics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Ionics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167273824001875\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273824001875","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

商用固体氧化物燃料电池(SOFC)的一大风险是阴极和电解质层之间的潜在分层。2021 年提出的热膨胀抵消策略可以有效缓解这一问题,即传统阴极与负热膨胀氧化物复合。在此,我们开发了名为 LaSrCoFeO (LSCF)-xSmZnMnO (SZM) (x = 0、5、10、15 和 20 wt.%)的新型复合阴极。LSCF 和 SZM 相之间形成了具有明显晶格畸变的随机相界。x = 10% 时电化学性能最佳。在 923-723 K 时,相应的峰值功率密度为 1.151-0.147 W-cm,比 x = 0 时的峰值功率密度(0.731-0.087 W-cm)高出 57-69%。电导率、电化学阻抗谱(EIS)和弛豫时间分布(DRT)结果进一步证实,阴极和电解质层之间热匹配的改善应是中温 SOFC(IT-SOFC)高性能的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High performance thermal expansion offset LSCF-SZM cathodes of IT-SOFCs

One big risk for commercial solid oxide fuel cells (SOFCs) is the potential delamination between cathode and electrolyte layers. It can be effectively alleviated by the thermal expansion offset strategy proposed in 2021, i.e., conventional cathode composited with the negative thermal expansion oxides. Here novel composite cathodes designated as La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF)-xSm0.85Zn0.15MnO3 (SZM) (x = 0, 5, 10, 15, and 20 wt.%) are developed. Random phase boundaries with apparent lattice distortion are formed between LSCF and SZM phases. The best electrochemical performance is obtained for x = 10%. The corresponding peak power density at 923–723 K is 1.151–0.147 W·cm−2, which is 57–69% higher than that (0.731–0.087 W·cm−2) for x = 0. More importantly, markedly enhanced long-term and thermal cycling stability is also obtained. Results of electrical conductivity, electrochemical impedance spectroscopy (EIS) and distribution of relaxation time (DRT) results further confirm that improved thermal match between cathode and electrolyte layers should be responsible for the high performance of intermediate temperature SOFCs (IT-SOFCs).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solid State Ionics
Solid State Ionics 物理-物理:凝聚态物理
CiteScore
6.10
自引率
3.10%
发文量
152
审稿时长
58 days
期刊介绍: This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on: (i) physics and chemistry of defects in solids; (ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering; (iii) ion transport measurements, mechanisms and theory; (iv) solid state electrochemistry; (v) ionically-electronically mixed conducting solids. Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties. Review papers and relevant symposium proceedings are welcome.
期刊最新文献
Cu-doped ring-shaped Fe2O3 as high-capacity and high-rate anode for lithium-ion batteries Simulating transport of charged defects in BaZr0.8Y0.2O3‐δ|BaZr0.1Ce0.7Y0.1Yb0.1O3−δ bilayer electrolytes using a Nernst–Planck–Poisson model Structure and properties of proton exchange layers in lithium niobate-tantalate solid solutions Synthesis of carbon-coated Mn3O4 nanoparticles as a high performance cathode material for zinc-ion batteries by the addition of polyacrylonitrile Study of REBa2Fe3O8+δ (RE = Pr, Nd, Sm) layered perovskites as cobalt-free electrodes for symmetrical solid oxide fuel cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1