Kamran Rasheed, Mubashshir Ahmad Ansari, Shahnwaz Alam, Mohammad Nawaz Khan, Mahmood Alam
{"title":"关于不同角度的入口通道对简单 T 型微搅拌器和涡旋 T 型微搅拌器在宽雷诺数范围内的搅拌性能影响的参数研究","authors":"Kamran Rasheed, Mubashshir Ahmad Ansari, Shahnwaz Alam, Mohammad Nawaz Khan, Mahmood Alam","doi":"10.1007/s10404-024-02746-8","DOIUrl":null,"url":null,"abstract":"<div><p>Micromixers become the core elements of lab-on-chip (LOC) devices used for mixing fluid samples at a very small scale. For modest Reynolds numbers, the nature of fluid movement is laminar across the microchannel hence mixing is challenging. Numerous designs of micromixers for mixing enhancement inside microfluidic devices have been developed to solve this issue. The current investigation looks at the performance of two distinct versions of passive micromixers i.e. simple T micromixer (STMM) and vortex T micromixer (VTMM), employing different angular configurations (i.e. 30°, 60°, 90°, 120° and 150°) on their inlet channel to monitor the consistency of blending for the Reynolds number in a range of 10–150. Numerical investigations were done by performing simulations on these geometrical arrangements to evaluate the level of mixing, pressure gradient and cost of mixing. The outcome indicates the performance of mixing is dependent on the angular arrangement of inlet channels. For STMM, the layout with inlet channels at 120° performs most effectively, whereas, for VTMM, the configuration with inlets at 90° performs best.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 8","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parametric study on the influence of varying angled inlet channels on mixing performance in simple T micromixers and vortex T micromixers across a wide range of Reynolds numbers\",\"authors\":\"Kamran Rasheed, Mubashshir Ahmad Ansari, Shahnwaz Alam, Mohammad Nawaz Khan, Mahmood Alam\",\"doi\":\"10.1007/s10404-024-02746-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Micromixers become the core elements of lab-on-chip (LOC) devices used for mixing fluid samples at a very small scale. For modest Reynolds numbers, the nature of fluid movement is laminar across the microchannel hence mixing is challenging. Numerous designs of micromixers for mixing enhancement inside microfluidic devices have been developed to solve this issue. The current investigation looks at the performance of two distinct versions of passive micromixers i.e. simple T micromixer (STMM) and vortex T micromixer (VTMM), employing different angular configurations (i.e. 30°, 60°, 90°, 120° and 150°) on their inlet channel to monitor the consistency of blending for the Reynolds number in a range of 10–150. Numerical investigations were done by performing simulations on these geometrical arrangements to evaluate the level of mixing, pressure gradient and cost of mixing. The outcome indicates the performance of mixing is dependent on the angular arrangement of inlet channels. For STMM, the layout with inlet channels at 120° performs most effectively, whereas, for VTMM, the configuration with inlets at 90° performs best.</p></div>\",\"PeriodicalId\":706,\"journal\":{\"name\":\"Microfluidics and Nanofluidics\",\"volume\":\"28 8\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microfluidics and Nanofluidics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10404-024-02746-8\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microfluidics and Nanofluidics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10404-024-02746-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Parametric study on the influence of varying angled inlet channels on mixing performance in simple T micromixers and vortex T micromixers across a wide range of Reynolds numbers
Micromixers become the core elements of lab-on-chip (LOC) devices used for mixing fluid samples at a very small scale. For modest Reynolds numbers, the nature of fluid movement is laminar across the microchannel hence mixing is challenging. Numerous designs of micromixers for mixing enhancement inside microfluidic devices have been developed to solve this issue. The current investigation looks at the performance of two distinct versions of passive micromixers i.e. simple T micromixer (STMM) and vortex T micromixer (VTMM), employing different angular configurations (i.e. 30°, 60°, 90°, 120° and 150°) on their inlet channel to monitor the consistency of blending for the Reynolds number in a range of 10–150. Numerical investigations were done by performing simulations on these geometrical arrangements to evaluate the level of mixing, pressure gradient and cost of mixing. The outcome indicates the performance of mixing is dependent on the angular arrangement of inlet channels. For STMM, the layout with inlet channels at 120° performs most effectively, whereas, for VTMM, the configuration with inlets at 90° performs best.
期刊介绍:
Microfluidics and Nanofluidics is an international peer-reviewed journal that aims to publish papers in all aspects of microfluidics, nanofluidics and lab-on-a-chip science and technology. The objectives of the journal are to (1) provide an overview of the current state of the research and development in microfluidics, nanofluidics and lab-on-a-chip devices, (2) improve the fundamental understanding of microfluidic and nanofluidic phenomena, and (3) discuss applications of microfluidics, nanofluidics and lab-on-a-chip devices. Topics covered in this journal include:
1.000 Fundamental principles of micro- and nanoscale phenomena like,
flow, mass transport and reactions
3.000 Theoretical models and numerical simulation with experimental and/or analytical proof
4.000 Novel measurement & characterization technologies
5.000 Devices (actuators and sensors)
6.000 New unit-operations for dedicated microfluidic platforms
7.000 Lab-on-a-Chip applications
8.000 Microfabrication technologies and materials
Please note, Microfluidics and Nanofluidics does not publish manuscripts studying pure microscale heat transfer since there are many journals that cover this field of research (Journal of Heat Transfer, Journal of Heat and Mass Transfer, Journal of Heat and Fluid Flow, etc.).