{"title":"在潮湿环境中使用氩微波等离子体射流降解亚甲基蓝","authors":"Nadir Aloui, Ibtissem Belgacem, Ahmad Hamdan","doi":"10.1007/s11090-024-10494-4","DOIUrl":null,"url":null,"abstract":"<div><p>Plasma-liquid interactions yield numerous physicochemical phenomena, rendering them promising for various applications. Plasma-based technology is proposed for water treatment due to its high efficiency in removing contaminants unattainable by conventional techniques. In this study, we employ an argon microwave plasma jet (MWPJ) to investigate methylene blue (MB) degradation. We observe a significant enhancement in the MB degradation rate in a covered system, attributed to increased air humidity promoting hydroxyl radicals (OH) production, which degrade approximately 95% of MB. Furthermore, the injection of O<sub>2</sub> gas into the solution under the plasma generates more hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), around 30 mg/L compared to approximately 20 mg/L without injection, although the MB degradation efficiency is reduced. We evaluate MB degradation under various solution properties, revealing that increasing electrical conductivity decreases the MB degradation rate until it becomes independent for conductivities > 10,000 µS/cm. In these latter conditions, a non-conventional temporal evolution of solution conductivity was observed: a decrease during the first tens of minutes followed by a continuous increase for longer treatment time. Conversely, solution acidity minimally affects the MB degradation rate. The MWPJ is characterized by optical emission spectroscopy, showing stability over time and under various solution properties. The energy yield (Y<sub>50%</sub>) consistently demonstrates superior performance of the MWPJ in a closed environment compared to an open-to-air environment. Although its efficiency is relatively low compared to other systems, we anticipate improvements through parameter adjustments.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"44 5","pages":"1971 - 1989"},"PeriodicalIF":2.6000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Degradation of Methylene Blue by Using an Argon Microwave Plasma Jet in Humid Environment\",\"authors\":\"Nadir Aloui, Ibtissem Belgacem, Ahmad Hamdan\",\"doi\":\"10.1007/s11090-024-10494-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Plasma-liquid interactions yield numerous physicochemical phenomena, rendering them promising for various applications. Plasma-based technology is proposed for water treatment due to its high efficiency in removing contaminants unattainable by conventional techniques. In this study, we employ an argon microwave plasma jet (MWPJ) to investigate methylene blue (MB) degradation. We observe a significant enhancement in the MB degradation rate in a covered system, attributed to increased air humidity promoting hydroxyl radicals (OH) production, which degrade approximately 95% of MB. Furthermore, the injection of O<sub>2</sub> gas into the solution under the plasma generates more hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), around 30 mg/L compared to approximately 20 mg/L without injection, although the MB degradation efficiency is reduced. We evaluate MB degradation under various solution properties, revealing that increasing electrical conductivity decreases the MB degradation rate until it becomes independent for conductivities > 10,000 µS/cm. In these latter conditions, a non-conventional temporal evolution of solution conductivity was observed: a decrease during the first tens of minutes followed by a continuous increase for longer treatment time. Conversely, solution acidity minimally affects the MB degradation rate. The MWPJ is characterized by optical emission spectroscopy, showing stability over time and under various solution properties. The energy yield (Y<sub>50%</sub>) consistently demonstrates superior performance of the MWPJ in a closed environment compared to an open-to-air environment. Although its efficiency is relatively low compared to other systems, we anticipate improvements through parameter adjustments.</p></div>\",\"PeriodicalId\":734,\"journal\":{\"name\":\"Plasma Chemistry and Plasma Processing\",\"volume\":\"44 5\",\"pages\":\"1971 - 1989\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Chemistry and Plasma Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11090-024-10494-4\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Chemistry and Plasma Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11090-024-10494-4","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Degradation of Methylene Blue by Using an Argon Microwave Plasma Jet in Humid Environment
Plasma-liquid interactions yield numerous physicochemical phenomena, rendering them promising for various applications. Plasma-based technology is proposed for water treatment due to its high efficiency in removing contaminants unattainable by conventional techniques. In this study, we employ an argon microwave plasma jet (MWPJ) to investigate methylene blue (MB) degradation. We observe a significant enhancement in the MB degradation rate in a covered system, attributed to increased air humidity promoting hydroxyl radicals (OH) production, which degrade approximately 95% of MB. Furthermore, the injection of O2 gas into the solution under the plasma generates more hydrogen peroxide (H2O2), around 30 mg/L compared to approximately 20 mg/L without injection, although the MB degradation efficiency is reduced. We evaluate MB degradation under various solution properties, revealing that increasing electrical conductivity decreases the MB degradation rate until it becomes independent for conductivities > 10,000 µS/cm. In these latter conditions, a non-conventional temporal evolution of solution conductivity was observed: a decrease during the first tens of minutes followed by a continuous increase for longer treatment time. Conversely, solution acidity minimally affects the MB degradation rate. The MWPJ is characterized by optical emission spectroscopy, showing stability over time and under various solution properties. The energy yield (Y50%) consistently demonstrates superior performance of the MWPJ in a closed environment compared to an open-to-air environment. Although its efficiency is relatively low compared to other systems, we anticipate improvements through parameter adjustments.
期刊介绍:
Publishing original papers on fundamental and applied research in plasma chemistry and plasma processing, the scope of this journal includes processing plasmas ranging from non-thermal plasmas to thermal plasmas, and fundamental plasma studies as well as studies of specific plasma applications. Such applications include but are not limited to plasma catalysis, environmental processing including treatment of liquids and gases, biological applications of plasmas including plasma medicine and agriculture, surface modification and deposition, powder and nanostructure synthesis, energy applications including plasma combustion and reforming, resource recovery, coupling of plasmas and electrochemistry, and plasma etching. Studies of chemical kinetics in plasmas, and the interactions of plasmas with surfaces are also solicited. It is essential that submissions include substantial consideration of the role of the plasma, for example, the relevant plasma chemistry, plasma physics or plasma–surface interactions; manuscripts that consider solely the properties of materials or substances processed using a plasma are not within the journal’s scope.