立体构型 Rh2/MoS2 双原子催化剂定向调节酯基吸附构型,促进乙醇合成

IF 19.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Chem Pub Date : 2024-11-14 DOI:10.1016/j.chempr.2024.06.015
Yi Zhao , Qingqing Gu , Xue Sun , Dong Wang , Xueqing Gong , Bing Yang , Jing Xu , Bo Peng , Ying Zhang , Chengsi Pan , Yongfa Zhu , Yang Lou
{"title":"立体构型 Rh2/MoS2 双原子催化剂定向调节酯基吸附构型,促进乙醇合成","authors":"Yi Zhao ,&nbsp;Qingqing Gu ,&nbsp;Xue Sun ,&nbsp;Dong Wang ,&nbsp;Xueqing Gong ,&nbsp;Bing Yang ,&nbsp;Jing Xu ,&nbsp;Bo Peng ,&nbsp;Ying Zhang ,&nbsp;Chengsi Pan ,&nbsp;Yongfa Zhu ,&nbsp;Yang Lou","doi":"10.1016/j.chempr.2024.06.015","DOIUrl":null,"url":null,"abstract":"<div><div><span><span>Developing a new tactic for directionally regulating a specific functional group of feedstock molecules at the molecular level is highly desired to synthesize high-value products but remains challenging. We design and construct the two-dimensional </span>molybdenum disulfide (2D MoS</span><sub>2</sub><span>) nanosheets edge-anchored dual Rh atoms (Rh</span><sub>2</sub>/MoS<sub>2</sub><span> dual-atom catalyst [DAC]) to boost the ethanol yield in dimethyl oxalate (DMO) selective hydrogenation by precisely manipulating the DMO adsorption configuration. Comprehensive experimental and theoretical results reveal that the pocket-like active center of Rh</span><sub>2</sub><span> atoms, with a precise metal-metal distance (3.5 Å), realizes the spatially matched bidentate DMO adsorption via two C=O groups (distance of 3.1 Å), which remarkably enhances the DMO activation and drives the production of ethanol via a unilateral activation mechanism. The turnover frequency (TOF) and H</span><sub>2</sub>/DMO molar ratio of Rh<sub>2</sub>/MoS<sub>2</sub> DAC are around 19 times higher and 17 times lower, respectively, than those of the best reported catalysts under comparable conditions. Our results offer practical opportunities for updating the industrial syngas-DMO-ethanol route.</div></div>","PeriodicalId":268,"journal":{"name":"Chem","volume":"10 11","pages":"Pages 3342-3363"},"PeriodicalIF":19.1000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Steric-confinement Rh2/MoS2 dual-atom catalyst directionally modulating adsorption configuration of ester group to boost ethanol synthesis\",\"authors\":\"Yi Zhao ,&nbsp;Qingqing Gu ,&nbsp;Xue Sun ,&nbsp;Dong Wang ,&nbsp;Xueqing Gong ,&nbsp;Bing Yang ,&nbsp;Jing Xu ,&nbsp;Bo Peng ,&nbsp;Ying Zhang ,&nbsp;Chengsi Pan ,&nbsp;Yongfa Zhu ,&nbsp;Yang Lou\",\"doi\":\"10.1016/j.chempr.2024.06.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><span><span>Developing a new tactic for directionally regulating a specific functional group of feedstock molecules at the molecular level is highly desired to synthesize high-value products but remains challenging. We design and construct the two-dimensional </span>molybdenum disulfide (2D MoS</span><sub>2</sub><span>) nanosheets edge-anchored dual Rh atoms (Rh</span><sub>2</sub>/MoS<sub>2</sub><span> dual-atom catalyst [DAC]) to boost the ethanol yield in dimethyl oxalate (DMO) selective hydrogenation by precisely manipulating the DMO adsorption configuration. Comprehensive experimental and theoretical results reveal that the pocket-like active center of Rh</span><sub>2</sub><span> atoms, with a precise metal-metal distance (3.5 Å), realizes the spatially matched bidentate DMO adsorption via two C=O groups (distance of 3.1 Å), which remarkably enhances the DMO activation and drives the production of ethanol via a unilateral activation mechanism. The turnover frequency (TOF) and H</span><sub>2</sub>/DMO molar ratio of Rh<sub>2</sub>/MoS<sub>2</sub> DAC are around 19 times higher and 17 times lower, respectively, than those of the best reported catalysts under comparable conditions. Our results offer practical opportunities for updating the industrial syngas-DMO-ethanol route.</div></div>\",\"PeriodicalId\":268,\"journal\":{\"name\":\"Chem\",\"volume\":\"10 11\",\"pages\":\"Pages 3342-3363\"},\"PeriodicalIF\":19.1000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2451929424002948\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451929424002948","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

要合成高价值产品,开发一种在分子水平上定向调节原料分子特定官能团的新方法是非常必要的,但这仍然具有挑战性。我们设计并构建了二维二硫化钼(2D MoS2)纳米片边缘锚定双 Rh 原子(Rh2/MoS2 双原子催化剂 [DAC]),通过精确操纵 DMO 吸附构型,提高草酸二甲酯(DMO)选择性加氢反应中的乙醇产率。综合实验和理论结果表明,Rh2 原子的口袋状活性中心具有精确的金属-金属间距(3.5 Å),通过两个 C=O 基团(间距为 3.1 Å)实现了空间匹配的双齿 DMO 吸附,从而显著增强了 DMO 的活化,并通过单侧活化机制促进了乙醇的生成。在可比条件下,Rh2/MoS2 DAC 的翻转频率(TOF)和 H2/DMO 摩尔比分别比已报道的最佳催化剂高约 19 倍和低约 17 倍。我们的研究结果为更新工业合成气-DMO-乙醇路线提供了切实可行的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Steric-confinement Rh2/MoS2 dual-atom catalyst directionally modulating adsorption configuration of ester group to boost ethanol synthesis
Developing a new tactic for directionally regulating a specific functional group of feedstock molecules at the molecular level is highly desired to synthesize high-value products but remains challenging. We design and construct the two-dimensional molybdenum disulfide (2D MoS2) nanosheets edge-anchored dual Rh atoms (Rh2/MoS2 dual-atom catalyst [DAC]) to boost the ethanol yield in dimethyl oxalate (DMO) selective hydrogenation by precisely manipulating the DMO adsorption configuration. Comprehensive experimental and theoretical results reveal that the pocket-like active center of Rh2 atoms, with a precise metal-metal distance (3.5 Å), realizes the spatially matched bidentate DMO adsorption via two C=O groups (distance of 3.1 Å), which remarkably enhances the DMO activation and drives the production of ethanol via a unilateral activation mechanism. The turnover frequency (TOF) and H2/DMO molar ratio of Rh2/MoS2 DAC are around 19 times higher and 17 times lower, respectively, than those of the best reported catalysts under comparable conditions. Our results offer practical opportunities for updating the industrial syngas-DMO-ethanol route.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chem
Chem Environmental Science-Environmental Chemistry
CiteScore
32.40
自引率
1.30%
发文量
281
期刊介绍: Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.
期刊最新文献
Cold-resilient zinc batteries with organic-free solvation structures Producing economically viable renewable diesel by upgrading organic solid waste with natural gas ortho-Aromatic polyamides by ring-opening polymerization of N-carboxyanhydrides In-depth understanding and precise modulation of surface reconstruction during heterogeneous electrocatalysis: From model to practical catalyst The progress and challenges of tin-lead alloyed perovskites: Toward the development of large-scale all-perovskite tandem solar cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1