{"title":"PreDBP-PLMs:基于预训练蛋白质语言模型和卷积神经网络的 DNA 结合蛋白预测。","authors":"Dawei Qi, Chen Song, Taigang Liu","doi":"10.1016/j.ab.2024.115603","DOIUrl":null,"url":null,"abstract":"<div><p>The recognition of DNA-binding proteins (DBPs) is the crucial step to understanding their roles in various biological processes such as genetic regulation, gene expression, cell cycle control, DNA repair, and replication within cells. However, conventional experimental methods for identifying DBPs are usually time-consuming and expensive. Therefore, there is an urgent need to develop rapid and efficient computational methods for the prediction of DBPs. In this study, we proposed a novel predictor named PreDBP-PLMs to further improve the identification accuracy of DBPs by fusing the pre-trained protein language model (PLM) ProtT5 embedding with evolutionary features as input to the classic convolutional neural network (CNN) model. Firstly, the ProtT5 embedding was combined with different evolutionary features derived from the position-specific scoring matrix (PSSM) to represent protein sequences. Then, the optimal feature combination was selected and input to the CNN classifier for the prediction of DBPs. Finally, the 5-fold cross-validation (CV), the leave-one-out CV (LOOCV), and the independent set test were adopted to examine the performance of PreDBP-PLMs on the benchmark datasets. Compared to the existing state-of-the-art predictors, PreDBP-PLMs exhibits an accuracy improvement of 0.5 % and 5.2 % on the PDB186 and PDB2272 datasets, respectively. It demonstrated that the proposed method could serve as a useful tool for the recognition of DBPs.</p></div>","PeriodicalId":7830,"journal":{"name":"Analytical biochemistry","volume":"694 ","pages":"Article 115603"},"PeriodicalIF":2.6000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PreDBP-PLMs: Prediction of DNA-binding proteins based on pre-trained protein language models and convolutional neural networks\",\"authors\":\"Dawei Qi, Chen Song, Taigang Liu\",\"doi\":\"10.1016/j.ab.2024.115603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The recognition of DNA-binding proteins (DBPs) is the crucial step to understanding their roles in various biological processes such as genetic regulation, gene expression, cell cycle control, DNA repair, and replication within cells. However, conventional experimental methods for identifying DBPs are usually time-consuming and expensive. Therefore, there is an urgent need to develop rapid and efficient computational methods for the prediction of DBPs. In this study, we proposed a novel predictor named PreDBP-PLMs to further improve the identification accuracy of DBPs by fusing the pre-trained protein language model (PLM) ProtT5 embedding with evolutionary features as input to the classic convolutional neural network (CNN) model. Firstly, the ProtT5 embedding was combined with different evolutionary features derived from the position-specific scoring matrix (PSSM) to represent protein sequences. Then, the optimal feature combination was selected and input to the CNN classifier for the prediction of DBPs. Finally, the 5-fold cross-validation (CV), the leave-one-out CV (LOOCV), and the independent set test were adopted to examine the performance of PreDBP-PLMs on the benchmark datasets. Compared to the existing state-of-the-art predictors, PreDBP-PLMs exhibits an accuracy improvement of 0.5 % and 5.2 % on the PDB186 and PDB2272 datasets, respectively. It demonstrated that the proposed method could serve as a useful tool for the recognition of DBPs.</p></div>\",\"PeriodicalId\":7830,\"journal\":{\"name\":\"Analytical biochemistry\",\"volume\":\"694 \",\"pages\":\"Article 115603\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003269724001477\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003269724001477","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
PreDBP-PLMs: Prediction of DNA-binding proteins based on pre-trained protein language models and convolutional neural networks
The recognition of DNA-binding proteins (DBPs) is the crucial step to understanding their roles in various biological processes such as genetic regulation, gene expression, cell cycle control, DNA repair, and replication within cells. However, conventional experimental methods for identifying DBPs are usually time-consuming and expensive. Therefore, there is an urgent need to develop rapid and efficient computational methods for the prediction of DBPs. In this study, we proposed a novel predictor named PreDBP-PLMs to further improve the identification accuracy of DBPs by fusing the pre-trained protein language model (PLM) ProtT5 embedding with evolutionary features as input to the classic convolutional neural network (CNN) model. Firstly, the ProtT5 embedding was combined with different evolutionary features derived from the position-specific scoring matrix (PSSM) to represent protein sequences. Then, the optimal feature combination was selected and input to the CNN classifier for the prediction of DBPs. Finally, the 5-fold cross-validation (CV), the leave-one-out CV (LOOCV), and the independent set test were adopted to examine the performance of PreDBP-PLMs on the benchmark datasets. Compared to the existing state-of-the-art predictors, PreDBP-PLMs exhibits an accuracy improvement of 0.5 % and 5.2 % on the PDB186 and PDB2272 datasets, respectively. It demonstrated that the proposed method could serve as a useful tool for the recognition of DBPs.
期刊介绍:
The journal''s title Analytical Biochemistry: Methods in the Biological Sciences declares its broad scope: methods for the basic biological sciences that include biochemistry, molecular genetics, cell biology, proteomics, immunology, bioinformatics and wherever the frontiers of research take the field.
The emphasis is on methods from the strictly analytical to the more preparative that would include novel approaches to protein purification as well as improvements in cell and organ culture. The actual techniques are equally inclusive ranging from aptamers to zymology.
The journal has been particularly active in:
-Analytical techniques for biological molecules-
Aptamer selection and utilization-
Biosensors-
Chromatography-
Cloning, sequencing and mutagenesis-
Electrochemical methods-
Electrophoresis-
Enzyme characterization methods-
Immunological approaches-
Mass spectrometry of proteins and nucleic acids-
Metabolomics-
Nano level techniques-
Optical spectroscopy in all its forms.
The journal is reluctant to include most drug and strictly clinical studies as there are more suitable publication platforms for these types of papers.