{"title":"Runx1 通过介导 miR-203-3p/Pde4d 轴促进缺血性中风的神经元损伤","authors":"Yongwen Deng, Shengli Sun","doi":"10.1080/02699052.2024.2373914","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>It has been reported that Runx1 engaged in IS progression, but the detailed mechanism of Runx1 in IS is still unclear.</p><p><strong>Methods: </strong>Mice and HT22 cells were subjected to the process of middle cerebral artery occlusion and reperfusion (MCAO/R) and oxygen-glucose deprivation/reoxygenation (OGD/R), respectively. Infract volume was tested using TTC staining. The levels of inflammatory cytokines were investigated using ELISA assay. Cell viability was examined utilizing MTS. Apoptosis rate was evaluated using flow cytometry and TUNEL. The productions of SOD and MDA were monitored by means of commercial kits. The correlations among Runx1, miR-203-3p and Pde4d were ascertained using dual luciferase reporter gene, ChIP and RNA-RNA pull-down assays.</p><p><strong>Results: </strong>Runx1 and Pde4d were abnormally elevated, while miR-203-3p was notably declined in MCAO/R mice and OGD/R-induced HT22 cells. OGD/R treatment suppressed cell viability and facilitated cell apoptosis, inflammation and oxidative stress, which were compromised by Runx1 knockdown or miR-203-3p upregulation. Runx1 bound to miR-203-3p promoter, thus decreasing miR-203-3p expression. MiR-203-3p inhibited Pde4d expression via targeting Pde4d mRNA. Runx1 deficiency-induced protection effects on OGD/R-treated HT22 cells were offset by miR-203-3p downregulation.</p><p><strong>Conclusion: </strong>Runx1 aggravated neuronal injury caused by IS through mediating miR-203-3p/Pde4d axis.</p>","PeriodicalId":9082,"journal":{"name":"Brain injury","volume":" ","pages":"1035-1045"},"PeriodicalIF":1.5000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Runx1 promotes neuronal injury in ischemic stroke through mediating miR-203-3p/Pde4d axis.\",\"authors\":\"Yongwen Deng, Shengli Sun\",\"doi\":\"10.1080/02699052.2024.2373914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>It has been reported that Runx1 engaged in IS progression, but the detailed mechanism of Runx1 in IS is still unclear.</p><p><strong>Methods: </strong>Mice and HT22 cells were subjected to the process of middle cerebral artery occlusion and reperfusion (MCAO/R) and oxygen-glucose deprivation/reoxygenation (OGD/R), respectively. Infract volume was tested using TTC staining. The levels of inflammatory cytokines were investigated using ELISA assay. Cell viability was examined utilizing MTS. Apoptosis rate was evaluated using flow cytometry and TUNEL. The productions of SOD and MDA were monitored by means of commercial kits. The correlations among Runx1, miR-203-3p and Pde4d were ascertained using dual luciferase reporter gene, ChIP and RNA-RNA pull-down assays.</p><p><strong>Results: </strong>Runx1 and Pde4d were abnormally elevated, while miR-203-3p was notably declined in MCAO/R mice and OGD/R-induced HT22 cells. OGD/R treatment suppressed cell viability and facilitated cell apoptosis, inflammation and oxidative stress, which were compromised by Runx1 knockdown or miR-203-3p upregulation. Runx1 bound to miR-203-3p promoter, thus decreasing miR-203-3p expression. MiR-203-3p inhibited Pde4d expression via targeting Pde4d mRNA. Runx1 deficiency-induced protection effects on OGD/R-treated HT22 cells were offset by miR-203-3p downregulation.</p><p><strong>Conclusion: </strong>Runx1 aggravated neuronal injury caused by IS through mediating miR-203-3p/Pde4d axis.</p>\",\"PeriodicalId\":9082,\"journal\":{\"name\":\"Brain injury\",\"volume\":\" \",\"pages\":\"1035-1045\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain injury\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/02699052.2024.2373914\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain injury","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/02699052.2024.2373914","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/12 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Runx1 promotes neuronal injury in ischemic stroke through mediating miR-203-3p/Pde4d axis.
Background: It has been reported that Runx1 engaged in IS progression, but the detailed mechanism of Runx1 in IS is still unclear.
Methods: Mice and HT22 cells were subjected to the process of middle cerebral artery occlusion and reperfusion (MCAO/R) and oxygen-glucose deprivation/reoxygenation (OGD/R), respectively. Infract volume was tested using TTC staining. The levels of inflammatory cytokines were investigated using ELISA assay. Cell viability was examined utilizing MTS. Apoptosis rate was evaluated using flow cytometry and TUNEL. The productions of SOD and MDA were monitored by means of commercial kits. The correlations among Runx1, miR-203-3p and Pde4d were ascertained using dual luciferase reporter gene, ChIP and RNA-RNA pull-down assays.
Results: Runx1 and Pde4d were abnormally elevated, while miR-203-3p was notably declined in MCAO/R mice and OGD/R-induced HT22 cells. OGD/R treatment suppressed cell viability and facilitated cell apoptosis, inflammation and oxidative stress, which were compromised by Runx1 knockdown or miR-203-3p upregulation. Runx1 bound to miR-203-3p promoter, thus decreasing miR-203-3p expression. MiR-203-3p inhibited Pde4d expression via targeting Pde4d mRNA. Runx1 deficiency-induced protection effects on OGD/R-treated HT22 cells were offset by miR-203-3p downregulation.
Conclusion: Runx1 aggravated neuronal injury caused by IS through mediating miR-203-3p/Pde4d axis.
期刊介绍:
Brain Injury publishes critical information relating to research and clinical practice, adult and pediatric populations. The journal covers a full range of relevant topics relating to clinical, translational, and basic science research. Manuscripts address emergency and acute medical care, acute and post-acute rehabilitation, family and vocational issues, and long-term supports. Coverage includes assessment and interventions for functional, communication, neurological and psychological disorders.