具有高离子迁移率的气相合金晶体 S-Se 介电材料

IF 6.7 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Science: Advanced Materials and Devices Pub Date : 2024-07-02 DOI:10.1016/j.jsamd.2024.100763
Pradyumna Kumar Chand , Radha Raman , Zhi-Long Yen , Ian Daniell Santos , Wei-Ssu Liao , Ya-Ping Hsieh , Mario Hofmann
{"title":"具有高离子迁移率的气相合金晶体 S-Se 介电材料","authors":"Pradyumna Kumar Chand ,&nbsp;Radha Raman ,&nbsp;Zhi-Long Yen ,&nbsp;Ian Daniell Santos ,&nbsp;Wei-Ssu Liao ,&nbsp;Ya-Ping Hsieh ,&nbsp;Mario Hofmann","doi":"10.1016/j.jsamd.2024.100763","DOIUrl":null,"url":null,"abstract":"<div><p>The advancement of future electronic devices necessitates dielectric materials with enhanced compositional complexity and improved capabilities. We here demonstrate a gas-phase alloying approach that yields ultrathin and crystalline dielectrics with attractive properties for the integration into electronics. A surface-selective deposition process was shown to produce sulfur (S) and selenium (Se) alloys with large-scale uniformity. Through combination of experimental diffraction analysis and materials modeling, we establish the crystallinity of the alloy with a modified lattice structure compared to the host materials. The resulting lattice arrangement endows the alloy dielectric with high ionic mobility as validated by electrochemical impedance spectroscopy. Leveraging this innovative feature, we fabricate memristive devices exhibiting promising performance characteristics. Our findings demonstrate the feasibility of utilizing gas-phase alloying to engineer dielectrics with superior properties and functionality for future device integration.</p></div>","PeriodicalId":17219,"journal":{"name":"Journal of Science: Advanced Materials and Devices","volume":"9 3","pages":"Article 100763"},"PeriodicalIF":6.7000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468217924000947/pdfft?md5=2e2390255e9e259672a7b80db97bfb4f&pid=1-s2.0-S2468217924000947-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Gas phase alloyed crystalline S–Se dielectrics with high ionic mobility\",\"authors\":\"Pradyumna Kumar Chand ,&nbsp;Radha Raman ,&nbsp;Zhi-Long Yen ,&nbsp;Ian Daniell Santos ,&nbsp;Wei-Ssu Liao ,&nbsp;Ya-Ping Hsieh ,&nbsp;Mario Hofmann\",\"doi\":\"10.1016/j.jsamd.2024.100763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The advancement of future electronic devices necessitates dielectric materials with enhanced compositional complexity and improved capabilities. We here demonstrate a gas-phase alloying approach that yields ultrathin and crystalline dielectrics with attractive properties for the integration into electronics. A surface-selective deposition process was shown to produce sulfur (S) and selenium (Se) alloys with large-scale uniformity. Through combination of experimental diffraction analysis and materials modeling, we establish the crystallinity of the alloy with a modified lattice structure compared to the host materials. The resulting lattice arrangement endows the alloy dielectric with high ionic mobility as validated by electrochemical impedance spectroscopy. Leveraging this innovative feature, we fabricate memristive devices exhibiting promising performance characteristics. Our findings demonstrate the feasibility of utilizing gas-phase alloying to engineer dielectrics with superior properties and functionality for future device integration.</p></div>\",\"PeriodicalId\":17219,\"journal\":{\"name\":\"Journal of Science: Advanced Materials and Devices\",\"volume\":\"9 3\",\"pages\":\"Article 100763\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2468217924000947/pdfft?md5=2e2390255e9e259672a7b80db97bfb4f&pid=1-s2.0-S2468217924000947-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Science: Advanced Materials and Devices\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468217924000947\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science: Advanced Materials and Devices","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468217924000947","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

未来电子设备的发展需要成分更复杂、性能更强的电介质材料。我们在此展示了一种气相合金化方法,它能产生超薄、结晶的电介质,并具有极具吸引力的特性,可集成到电子设备中。研究表明,表面选择性沉积工艺可生产出具有大规模均匀性的硫 (S) 和硒 (Se) 合金。通过结合实验衍射分析和材料建模,我们确定了合金的结晶度,与主材料相比,合金的晶格结构有所改变。由此产生的晶格排列使合金电介质具有高离子迁移率,这一点已通过电化学阻抗光谱得到验证。利用这一创新特性,我们制造出了具有良好性能特点的忆阻器件。我们的研究结果证明了利用气相合金化技术制造具有优异性能和功能的电介质以实现未来器件集成的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gas phase alloyed crystalline S–Se dielectrics with high ionic mobility

The advancement of future electronic devices necessitates dielectric materials with enhanced compositional complexity and improved capabilities. We here demonstrate a gas-phase alloying approach that yields ultrathin and crystalline dielectrics with attractive properties for the integration into electronics. A surface-selective deposition process was shown to produce sulfur (S) and selenium (Se) alloys with large-scale uniformity. Through combination of experimental diffraction analysis and materials modeling, we establish the crystallinity of the alloy with a modified lattice structure compared to the host materials. The resulting lattice arrangement endows the alloy dielectric with high ionic mobility as validated by electrochemical impedance spectroscopy. Leveraging this innovative feature, we fabricate memristive devices exhibiting promising performance characteristics. Our findings demonstrate the feasibility of utilizing gas-phase alloying to engineer dielectrics with superior properties and functionality for future device integration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Science: Advanced Materials and Devices
Journal of Science: Advanced Materials and Devices Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
11.90
自引率
2.50%
发文量
88
审稿时长
47 days
期刊介绍: In 1985, the Journal of Science was founded as a platform for publishing national and international research papers across various disciplines, including natural sciences, technology, social sciences, and humanities. Over the years, the journal has experienced remarkable growth in terms of quality, size, and scope. Today, it encompasses a diverse range of publications dedicated to academic research. Considering the rapid expansion of materials science, we are pleased to introduce the Journal of Science: Advanced Materials and Devices. This new addition to our journal series offers researchers an exciting opportunity to publish their work on all aspects of materials science and technology within the esteemed Journal of Science. With this development, we aim to revolutionize the way research in materials science is expressed and organized, further strengthening our commitment to promoting outstanding research across various scientific and technological fields.
期刊最新文献
Harnessing ambient sound: Different approaches to acoustic energy harvesting using triboelectric nanogenerators A novel carbon quantum dot (CQD) synthesis method with cost-effective reactants and a definitive indication: Hot bubble synthesis (HBBBS) Pt/ZnO and Pt/few-layer graphene/ZnO Schottky devices with Al ohmic contacts using Atlas simulation and machine learning Photothermal impacts induced by laser pulse in a 2D semiconducting medium with temperature-dependent properties under strain–temperature rate-dependent theory Comparative analysis of microlens array formation in fused silica glass by laser: Femtosecond versus picosecond pulses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1