纳米级锂离子导电氧化物:Li6.1Ga0.3La3Zr2O12 和 Li0.3La0.57TiO3

IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Solid State Ionics Pub Date : 2024-07-09 DOI:10.1016/j.ssi.2024.116635
Mingjie Kong , Jian-Fang Wu
{"title":"纳米级锂离子导电氧化物:Li6.1Ga0.3La3Zr2O12 和 Li0.3La0.57TiO3","authors":"Mingjie Kong ,&nbsp;Jian-Fang Wu","doi":"10.1016/j.ssi.2024.116635","DOIUrl":null,"url":null,"abstract":"<div><p>Lithium-ion conducting oxides, prepared by conventional ball-milling and subsequently calcination at high temperatures, are always in microscales, which inevitably limits their application in composite metallic anodes. Herein, 20 nm-scaled Li<sub>6.1</sub>Ga<sub>0.3</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> (LLZO) and 10 nm-scaled Li<sub>0.3</sub>La<sub>0.57</sub>TiO<sub>3</sub> (LLTO) oxides are fabricated by a modified sol-gel-calcination method. The gelation by the esterification reaction between citric acid and ethylene glycol potential create nanoscale zones in the molecular-level homogeneous mixed solution, resulting in LLTO and LLZO nanoparticles separated by carbonized productions. These carbonized products could suppress the growth of nanoparticles into micrometers in the oxidation process of these residual products, and finally, nanoscale LLTO and LLZO lithium-ion conducting oxides were evented. Solid electrolytes prepared using nanoscale LLTO and LLZO deliver comparable high ionic conductivities, indicating promising applications in all-solid-state lithium batteries.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"414 ","pages":"Article 116635"},"PeriodicalIF":3.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanometer scale lithium-ion conducting oxides: Li6.1Ga0.3La3Zr2O12 and Li0.3La0.57TiO3\",\"authors\":\"Mingjie Kong ,&nbsp;Jian-Fang Wu\",\"doi\":\"10.1016/j.ssi.2024.116635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Lithium-ion conducting oxides, prepared by conventional ball-milling and subsequently calcination at high temperatures, are always in microscales, which inevitably limits their application in composite metallic anodes. Herein, 20 nm-scaled Li<sub>6.1</sub>Ga<sub>0.3</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> (LLZO) and 10 nm-scaled Li<sub>0.3</sub>La<sub>0.57</sub>TiO<sub>3</sub> (LLTO) oxides are fabricated by a modified sol-gel-calcination method. The gelation by the esterification reaction between citric acid and ethylene glycol potential create nanoscale zones in the molecular-level homogeneous mixed solution, resulting in LLTO and LLZO nanoparticles separated by carbonized productions. These carbonized products could suppress the growth of nanoparticles into micrometers in the oxidation process of these residual products, and finally, nanoscale LLTO and LLZO lithium-ion conducting oxides were evented. Solid electrolytes prepared using nanoscale LLTO and LLZO deliver comparable high ionic conductivities, indicating promising applications in all-solid-state lithium batteries.</p></div>\",\"PeriodicalId\":431,\"journal\":{\"name\":\"Solid State Ionics\",\"volume\":\"414 \",\"pages\":\"Article 116635\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Ionics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167273824001838\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273824001838","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

传统球磨法制备的锂离子导电氧化物总是处于微观尺度,这不可避免地限制了它们在复合金属阳极中的应用。本文采用改良的溶胶-凝胶-煅烧法制备了 20 纳米尺度的 Li6.1Ga0.3La3Zr2O12 (LLZO) 和 10 纳米尺度的 Li0.3La0.57TiO3 (LLTO) 氧化物。柠檬酸和乙二醇之间的酯化反应产生的凝胶化潜能在分子级均相混合溶液中形成了纳米级区域,从而产生了由碳化产物分离的 LLTO 和 LLZO 纳米颗粒。这些碳化产物可在这些残留产物的氧化过程中抑制纳米颗粒向微米级的生长,最终形成纳米级的 LLTO 和 LLZO 锂离子导电氧化物。使用纳米级 LLTO 和 LLZO 制备的固体电解质具有可比的高离子电导率,表明其在全固态锂电池中的应用前景广阔。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nanometer scale lithium-ion conducting oxides: Li6.1Ga0.3La3Zr2O12 and Li0.3La0.57TiO3

Lithium-ion conducting oxides, prepared by conventional ball-milling and subsequently calcination at high temperatures, are always in microscales, which inevitably limits their application in composite metallic anodes. Herein, 20 nm-scaled Li6.1Ga0.3La3Zr2O12 (LLZO) and 10 nm-scaled Li0.3La0.57TiO3 (LLTO) oxides are fabricated by a modified sol-gel-calcination method. The gelation by the esterification reaction between citric acid and ethylene glycol potential create nanoscale zones in the molecular-level homogeneous mixed solution, resulting in LLTO and LLZO nanoparticles separated by carbonized productions. These carbonized products could suppress the growth of nanoparticles into micrometers in the oxidation process of these residual products, and finally, nanoscale LLTO and LLZO lithium-ion conducting oxides were evented. Solid electrolytes prepared using nanoscale LLTO and LLZO deliver comparable high ionic conductivities, indicating promising applications in all-solid-state lithium batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solid State Ionics
Solid State Ionics 物理-物理:凝聚态物理
CiteScore
6.10
自引率
3.10%
发文量
152
审稿时长
58 days
期刊介绍: This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on: (i) physics and chemistry of defects in solids; (ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering; (iii) ion transport measurements, mechanisms and theory; (iv) solid state electrochemistry; (v) ionically-electronically mixed conducting solids. Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties. Review papers and relevant symposium proceedings are welcome.
期刊最新文献
Editorial Board Enhancing ionic conductivity of LiSiPON thin films electrolytes: Overcoming synthesis challenges related to Li-migration in the precursor target Preface "Special Issue for the 21st International Conference on Solid State Protonic Conductors (SSPC-21)" Enhancing cycling stability in Li-rich layered oxides by atomic layer deposition of LiNbO3 nanolayers Performance improvement tactics of sensitized solar cells based on CuInS2 quantum dots prepared by high temperature hot injection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1