Alexander Anderson, Adriaan Van der Mijnsbrugge, Xavier Cameleyre, Nathalie Gorret
{"title":"从筛选适合作为单细胞蛋白质的酵母到饲料批量培养。","authors":"Alexander Anderson, Adriaan Van der Mijnsbrugge, Xavier Cameleyre, Nathalie Gorret","doi":"10.1007/s10529-024-03504-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Fed-batch cultures have rarely been used in single cell protein (SCP) research. This work evaluated multiple yeast species for suitability as SCP cultivated using glucose- and sucrose-based substrate and performed in-depth studies of fed-batch SCP cultivation kinetics for selected yeasts, including determination of specific crude nitrogen-to-protein conversion factors.</p><p><strong>Methods: </strong>SCP was cultivated using fully synthetic media in flask batch or bioreactor fed-batch cultures. Crude nitrogen and nucleic acid content were determined using the Dumas method and fluorescence assay kits, respectively.</p><p><strong>Results: </strong>C. utilis compared favorably to other yeasts in flask batch cultures in terms of process yield (0.52 ± 0.01 g<sub>x</sub> g<sub>s</sub><sup>-1</sup>) and crude nitrogen content (10.0 ± 0.5 and 9.9 ± 0.5%<sub>CDW</sub> for glucose and sucrose, respectively). This is the first time biomass composition data was reported for SCP cultivated in fed-batch mode. C. utilis crude nitrogen content was consistent across the tested conditions (protein content stabilized around 50%<sub>CDW</sub> in fed-batch), while that of the benchmark yeast S. cerevisiae was higher in batch cultures and at the beginning of fed-batch relative to the end (protein content decreased over time and stabilized around 43%<sub>CDW</sub>). Total nucleic acid content of the yeasts was similar (6.8%<sub>CDW</sub> and 6.3%<sub>CDW</sub>, for C. utilis and S. cerevisiae, respectively), with crude nitrogen-to-protein conversion factors of 4.97 and 5.80.</p><p><strong>Conclusion: </strong>This study demonstrated the suitability of C. utilis as SCP, notably the robustness of its crude nitrogen content (as an indicator of protein content) across batch and fed-batch conditions, compared to that of the benchmark yeast S. cerevisiae.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":" ","pages":"827-842"},"PeriodicalIF":2.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From yeast screening for suitability as single cell protein to fed-batch cultures.\",\"authors\":\"Alexander Anderson, Adriaan Van der Mijnsbrugge, Xavier Cameleyre, Nathalie Gorret\",\"doi\":\"10.1007/s10529-024-03504-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Fed-batch cultures have rarely been used in single cell protein (SCP) research. This work evaluated multiple yeast species for suitability as SCP cultivated using glucose- and sucrose-based substrate and performed in-depth studies of fed-batch SCP cultivation kinetics for selected yeasts, including determination of specific crude nitrogen-to-protein conversion factors.</p><p><strong>Methods: </strong>SCP was cultivated using fully synthetic media in flask batch or bioreactor fed-batch cultures. Crude nitrogen and nucleic acid content were determined using the Dumas method and fluorescence assay kits, respectively.</p><p><strong>Results: </strong>C. utilis compared favorably to other yeasts in flask batch cultures in terms of process yield (0.52 ± 0.01 g<sub>x</sub> g<sub>s</sub><sup>-1</sup>) and crude nitrogen content (10.0 ± 0.5 and 9.9 ± 0.5%<sub>CDW</sub> for glucose and sucrose, respectively). This is the first time biomass composition data was reported for SCP cultivated in fed-batch mode. C. utilis crude nitrogen content was consistent across the tested conditions (protein content stabilized around 50%<sub>CDW</sub> in fed-batch), while that of the benchmark yeast S. cerevisiae was higher in batch cultures and at the beginning of fed-batch relative to the end (protein content decreased over time and stabilized around 43%<sub>CDW</sub>). Total nucleic acid content of the yeasts was similar (6.8%<sub>CDW</sub> and 6.3%<sub>CDW</sub>, for C. utilis and S. cerevisiae, respectively), with crude nitrogen-to-protein conversion factors of 4.97 and 5.80.</p><p><strong>Conclusion: </strong>This study demonstrated the suitability of C. utilis as SCP, notably the robustness of its crude nitrogen content (as an indicator of protein content) across batch and fed-batch conditions, compared to that of the benchmark yeast S. cerevisiae.</p>\",\"PeriodicalId\":8929,\"journal\":{\"name\":\"Biotechnology Letters\",\"volume\":\" \",\"pages\":\"827-842\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10529-024-03504-0\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10529-024-03504-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
From yeast screening for suitability as single cell protein to fed-batch cultures.
Purpose: Fed-batch cultures have rarely been used in single cell protein (SCP) research. This work evaluated multiple yeast species for suitability as SCP cultivated using glucose- and sucrose-based substrate and performed in-depth studies of fed-batch SCP cultivation kinetics for selected yeasts, including determination of specific crude nitrogen-to-protein conversion factors.
Methods: SCP was cultivated using fully synthetic media in flask batch or bioreactor fed-batch cultures. Crude nitrogen and nucleic acid content were determined using the Dumas method and fluorescence assay kits, respectively.
Results: C. utilis compared favorably to other yeasts in flask batch cultures in terms of process yield (0.52 ± 0.01 gx gs-1) and crude nitrogen content (10.0 ± 0.5 and 9.9 ± 0.5%CDW for glucose and sucrose, respectively). This is the first time biomass composition data was reported for SCP cultivated in fed-batch mode. C. utilis crude nitrogen content was consistent across the tested conditions (protein content stabilized around 50%CDW in fed-batch), while that of the benchmark yeast S. cerevisiae was higher in batch cultures and at the beginning of fed-batch relative to the end (protein content decreased over time and stabilized around 43%CDW). Total nucleic acid content of the yeasts was similar (6.8%CDW and 6.3%CDW, for C. utilis and S. cerevisiae, respectively), with crude nitrogen-to-protein conversion factors of 4.97 and 5.80.
Conclusion: This study demonstrated the suitability of C. utilis as SCP, notably the robustness of its crude nitrogen content (as an indicator of protein content) across batch and fed-batch conditions, compared to that of the benchmark yeast S. cerevisiae.
期刊介绍:
Biotechnology Letters is the world’s leading rapid-publication primary journal dedicated to biotechnology as a whole – that is to topics relating to actual or potential applications of biological reactions affected by microbial, plant or animal cells and biocatalysts derived from them.
All relevant aspects of molecular biology, genetics and cell biochemistry, of process and reactor design, of pre- and post-treatment steps, and of manufacturing or service operations are therefore included.
Contributions from industrial and academic laboratories are equally welcome. We also welcome contributions covering biotechnological aspects of regenerative medicine and biomaterials and also cancer biotechnology. Criteria for the acceptance of papers relate to our aim of publishing useful and informative results that will be of value to other workers in related fields.
The emphasis is very much on novelty and immediacy in order to justify rapid publication of authors’ results. It should be noted, however, that we do not normally publish papers (but this is not absolute) that deal with unidentified consortia of microorganisms (e.g. as in activated sludge) as these results may not be easily reproducible in other laboratories.
Papers describing the isolation and identification of microorganisms are not regarded as appropriate but such information can be appended as supporting information to a paper. Papers dealing with simple process development are usually considered to lack sufficient novelty or interest to warrant publication.