开发用于篮球运动员轨迹跟踪的多级特征融合模型

Tao Wang
{"title":"开发用于篮球运动员轨迹跟踪的多级特征融合模型","authors":"Tao Wang","doi":"10.1016/j.sasc.2024.200119","DOIUrl":null,"url":null,"abstract":"<div><p>To solve the problems of low matching degree, long tracking time, and low accuracy of multi-target tracking in the process of athlete motion trajectory tracking using deep learning technology, a new athlete motion trajectory tracking model was proposed in this study. The study first optimized the current object detection algorithm in basketball, utilized a hybrid attention mechanism to extract object features, and improved the non-maximum suppression strategy. Then, a hybrid branch network was introduced to improve the residual network and a new athlete identity recognition model was proposed. Finally, a new trajectory tracking model was designed by combining the object detection model and the athlete identity recognition model. The research results indicated that in the object detection experiment, the detection time of the proposed object detection algorithm was always below 0.4 s, and its average accuracy reached up to 0.63. In trajectory tracking testing, the final built tracking model had a multi-target tracking accuracy of up to 0.98, and its tracking overlap rate was as low as 0.02. This study has the following two contributions. Firstly, a new model of athlete trajectory tracking is proposed, which improves the accuracy and efficiency of multi-target tracking by optimizing object detection algorithm and introducing hybrid branch network. Second, the model has excellent performance in both object detection and track tracking, which can not only provide a new solution for athletes' motion trajectory tracking, but also significantly improve the effect of motion tracking.</p></div>","PeriodicalId":101205,"journal":{"name":"Systems and Soft Computing","volume":"6 ","pages":"Article 200119"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772941924000486/pdfft?md5=e3ea1a5ddad1763f0cf4e482d1ae93e8&pid=1-s2.0-S2772941924000486-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Development of a multi-level feature fusion model for basketball player trajectory tracking\",\"authors\":\"Tao Wang\",\"doi\":\"10.1016/j.sasc.2024.200119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To solve the problems of low matching degree, long tracking time, and low accuracy of multi-target tracking in the process of athlete motion trajectory tracking using deep learning technology, a new athlete motion trajectory tracking model was proposed in this study. The study first optimized the current object detection algorithm in basketball, utilized a hybrid attention mechanism to extract object features, and improved the non-maximum suppression strategy. Then, a hybrid branch network was introduced to improve the residual network and a new athlete identity recognition model was proposed. Finally, a new trajectory tracking model was designed by combining the object detection model and the athlete identity recognition model. The research results indicated that in the object detection experiment, the detection time of the proposed object detection algorithm was always below 0.4 s, and its average accuracy reached up to 0.63. In trajectory tracking testing, the final built tracking model had a multi-target tracking accuracy of up to 0.98, and its tracking overlap rate was as low as 0.02. This study has the following two contributions. Firstly, a new model of athlete trajectory tracking is proposed, which improves the accuracy and efficiency of multi-target tracking by optimizing object detection algorithm and introducing hybrid branch network. Second, the model has excellent performance in both object detection and track tracking, which can not only provide a new solution for athletes' motion trajectory tracking, but also significantly improve the effect of motion tracking.</p></div>\",\"PeriodicalId\":101205,\"journal\":{\"name\":\"Systems and Soft Computing\",\"volume\":\"6 \",\"pages\":\"Article 200119\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772941924000486/pdfft?md5=e3ea1a5ddad1763f0cf4e482d1ae93e8&pid=1-s2.0-S2772941924000486-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems and Soft Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772941924000486\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems and Soft Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772941924000486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了解决利用深度学习技术进行运动员运动轨迹跟踪过程中匹配度低、跟踪时间长、多目标跟踪精度低等问题,本研究提出了一种新的运动员运动轨迹跟踪模型。研究首先优化了当前篮球运动中的物体检测算法,利用混合注意力机制提取物体特征,并改进了非最大抑制策略。然后,引入混合分支网络来改进残差网络,并提出了新的运动员身份识别模型。最后,结合物体检测模型和运动员身份识别模型,设计了一种新的轨迹跟踪模型。研究结果表明,在物体检测实验中,所提出的物体检测算法的检测时间始终低于 0.4 s,平均准确率高达 0.63。在轨迹跟踪测试中,最终建立的跟踪模型的多目标跟踪精度高达 0.98,跟踪重叠率低至 0.02。本研究有以下两个贡献。首先,提出了一种新的运动员轨迹跟踪模型,通过优化物体检测算法和引入混合分支网络,提高了多目标跟踪的精度和效率。其次,该模型在物体检测和轨迹跟踪方面都有优异的表现,不仅能为运动员运动轨迹跟踪提供新的解决方案,还能显著提高运动跟踪的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of a multi-level feature fusion model for basketball player trajectory tracking

To solve the problems of low matching degree, long tracking time, and low accuracy of multi-target tracking in the process of athlete motion trajectory tracking using deep learning technology, a new athlete motion trajectory tracking model was proposed in this study. The study first optimized the current object detection algorithm in basketball, utilized a hybrid attention mechanism to extract object features, and improved the non-maximum suppression strategy. Then, a hybrid branch network was introduced to improve the residual network and a new athlete identity recognition model was proposed. Finally, a new trajectory tracking model was designed by combining the object detection model and the athlete identity recognition model. The research results indicated that in the object detection experiment, the detection time of the proposed object detection algorithm was always below 0.4 s, and its average accuracy reached up to 0.63. In trajectory tracking testing, the final built tracking model had a multi-target tracking accuracy of up to 0.98, and its tracking overlap rate was as low as 0.02. This study has the following two contributions. Firstly, a new model of athlete trajectory tracking is proposed, which improves the accuracy and efficiency of multi-target tracking by optimizing object detection algorithm and introducing hybrid branch network. Second, the model has excellent performance in both object detection and track tracking, which can not only provide a new solution for athletes' motion trajectory tracking, but also significantly improve the effect of motion tracking.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
期刊最新文献
A systematic assessment of sentiment analysis models on iraqi dialect-based texts Application of an intelligent English text classification model with improved KNN algorithm in the context of big data in libraries Analyzing the quality evaluation of college English teaching based on probabilistic linguistic multiple-attribute group decision-making Interior design assistant algorithm based on indoor scene analysis Research and application of visual synchronous positioning and mapping technology assisted by ultra wideband positioning technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1