纳米级给药系统中天然蛋白质和大分子纳米载体释放紫杉醇动力学的比较研究

Q3 Materials Science JCIS open Pub Date : 2024-07-06 DOI:10.1016/j.jciso.2024.100120
Laxmi Sai Viswanadha , Yashwanth Arcot , Yu-Ting Lin , Mustafa E.S. Akbulut
{"title":"纳米级给药系统中天然蛋白质和大分子纳米载体释放紫杉醇动力学的比较研究","authors":"Laxmi Sai Viswanadha ,&nbsp;Yashwanth Arcot ,&nbsp;Yu-Ting Lin ,&nbsp;Mustafa E.S. Akbulut","doi":"10.1016/j.jciso.2024.100120","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding the release behaviour of nanodrugs is a crucial step to better assess and control therapeutic outcomes and unfavourable side effects. Herein, we report a systematic study comparing the release kinetics and thermodynamics of paclitaxel (PTX) from supramolecularly assembled sub-micron particles based on natural macromolecules such as zein, whey, casein, bovine serum albumin (BSA) and conventional stabilizers such as pluronic F-127 (poloxamer 407), and β-cyclodextrin (β-CD) to gain insights into the role of carrier chemistry. For this purpose, nanomedicines with statistically indifferent sizes —in the range of 191.0 ± 0.8 nm (BSA) to 243.3 ± 11.6 nm (zein) were prepared (p &gt; 0.05). The zeta potential values ranged from −3.2 ± 1.1 mV (pluronic F-127) to −17.2 ± 1.8 mV (whey) in phosphate buffered saline. The type of nanocarrier significantly influenced the long-term steady-state plateau of the release, resulting in a cumulative release of 70.3 ± 2.0 % of PTX from casein (the highest) and 46.8 ± 4.7 % of PTX from zein (the lowest). Time-resolved release data were analysed with various kinetical models, encompassing zero-order, first-order, Higuchi, Peppas-Sahlin, and Korsmeyer-Peppas kinetics. The analysis revealed that the Korsmeyer-Peppas model best captured the data. For these nanomedicines, the half-life of the encapsulated drugs was found to be 106.4 ± 31.3 h (zein), 4.7 ± 1.2 h (whey), 10.7 ± 1.8 h (pluronic F-127), 6.4 ± 0.9 h (casein), 10.8 ± 3.2 h (β-CD), and 4.0 ± 1.0 h (BSA). TEM characterization revealed differences in the macromolecular arrangement of the active ingredient within these nanocarriers, in addition to the structural differences among the various encapsulating agents. These differences manifested as variations in the internal nanostructures, leading to the creation of distinct microenvironments that could either facilitate or impede the movement of PTX molecules through the encapsulant matrices. In clinical settings, such fine details of nanocarrier design are important: by choosing the most appropriate nanocarrier (or their mixtures), clinicians can fine-tune drug administration to obtain the intended therapeutic window while mitigating the risk of potential negative reactions.</p></div>","PeriodicalId":73541,"journal":{"name":"JCIS open","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666934X24000205/pdfft?md5=7b1c72770a322e806b51b12d21ef725a&pid=1-s2.0-S2666934X24000205-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A comparative investigation of release kinetics of paclitaxel from natural protein and macromolecular nanocarriers in nanoscale drug delivery systems\",\"authors\":\"Laxmi Sai Viswanadha ,&nbsp;Yashwanth Arcot ,&nbsp;Yu-Ting Lin ,&nbsp;Mustafa E.S. Akbulut\",\"doi\":\"10.1016/j.jciso.2024.100120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Understanding the release behaviour of nanodrugs is a crucial step to better assess and control therapeutic outcomes and unfavourable side effects. Herein, we report a systematic study comparing the release kinetics and thermodynamics of paclitaxel (PTX) from supramolecularly assembled sub-micron particles based on natural macromolecules such as zein, whey, casein, bovine serum albumin (BSA) and conventional stabilizers such as pluronic F-127 (poloxamer 407), and β-cyclodextrin (β-CD) to gain insights into the role of carrier chemistry. For this purpose, nanomedicines with statistically indifferent sizes —in the range of 191.0 ± 0.8 nm (BSA) to 243.3 ± 11.6 nm (zein) were prepared (p &gt; 0.05). The zeta potential values ranged from −3.2 ± 1.1 mV (pluronic F-127) to −17.2 ± 1.8 mV (whey) in phosphate buffered saline. The type of nanocarrier significantly influenced the long-term steady-state plateau of the release, resulting in a cumulative release of 70.3 ± 2.0 % of PTX from casein (the highest) and 46.8 ± 4.7 % of PTX from zein (the lowest). Time-resolved release data were analysed with various kinetical models, encompassing zero-order, first-order, Higuchi, Peppas-Sahlin, and Korsmeyer-Peppas kinetics. The analysis revealed that the Korsmeyer-Peppas model best captured the data. For these nanomedicines, the half-life of the encapsulated drugs was found to be 106.4 ± 31.3 h (zein), 4.7 ± 1.2 h (whey), 10.7 ± 1.8 h (pluronic F-127), 6.4 ± 0.9 h (casein), 10.8 ± 3.2 h (β-CD), and 4.0 ± 1.0 h (BSA). TEM characterization revealed differences in the macromolecular arrangement of the active ingredient within these nanocarriers, in addition to the structural differences among the various encapsulating agents. These differences manifested as variations in the internal nanostructures, leading to the creation of distinct microenvironments that could either facilitate or impede the movement of PTX molecules through the encapsulant matrices. In clinical settings, such fine details of nanocarrier design are important: by choosing the most appropriate nanocarrier (or their mixtures), clinicians can fine-tune drug administration to obtain the intended therapeutic window while mitigating the risk of potential negative reactions.</p></div>\",\"PeriodicalId\":73541,\"journal\":{\"name\":\"JCIS open\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666934X24000205/pdfft?md5=7b1c72770a322e806b51b12d21ef725a&pid=1-s2.0-S2666934X24000205-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JCIS open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666934X24000205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCIS open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666934X24000205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

摘要

了解纳米药物的释放行为是更好地评估和控制治疗效果及不良副作用的关键一步。在此,我们报告了一项系统研究,比较了紫杉醇(PTX)从基于天然大分子(如玉米蛋白、乳清、酪蛋白、牛血清白蛋白(BSA))和传统稳定剂(如pluronic F-127 (poloxamer 407) 和β-环糊精(β-CD))的超分子组装亚微米颗粒中的释放动力学和热力学,以深入了解载体化学的作用。为此,制备了统计意义上大小不一的纳米药物--从 191.0 ± 0.8 nm(BSA)到 243.3 ± 11.6 nm(玉米蛋白)(p > 0.05)。在磷酸盐缓冲盐水中,zeta 电位值从 -3.2 ± 1.1 mV(pluronic F-127)到 -17.2 ± 1.8 mV(乳清)不等。纳米载体的类型对释放的长期稳态高原有显著影响,结果是酪蛋白(最高)释放了 70.3 ± 2.0 % 的 PTX,玉米蛋白(最低)释放了 46.8 ± 4.7 % 的 PTX。用各种动力学模型(包括零阶、一阶、Higuchi、Peppas-Sahlin 和 Korsmeyer-Peppas 动力学)分析了时间分辨释放数据。分析表明,Korsmeyer-Peppas 模型最能反映数据。对于这些纳米药物,封装药物的半衰期分别为 106.4 ± 31.3 小时(玉米蛋白)、4.7 ± 1.2 小时(乳清)、10.7 ± 1.8 小时(pluronic F-127)、6.4 ± 0.9 小时(酪蛋白)、10.8 ± 3.2 小时(β-CD)和 4.0 ± 1.0 小时(BSA)。TEM 表征揭示了这些纳米载体中活性成分的大分子排列差异,以及各种封装剂之间的结构差异。这些差异表现为内部纳米结构的变化,导致形成不同的微环境,从而促进或阻碍 PTX 分子在封装基质中的移动。在临床环境中,纳米载体设计的这些细节非常重要:通过选择最合适的纳米载体(或它们的混合物),临床医生可以对给药进行微调,以获得预期的治疗窗口期,同时降低潜在不良反应的风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A comparative investigation of release kinetics of paclitaxel from natural protein and macromolecular nanocarriers in nanoscale drug delivery systems

Understanding the release behaviour of nanodrugs is a crucial step to better assess and control therapeutic outcomes and unfavourable side effects. Herein, we report a systematic study comparing the release kinetics and thermodynamics of paclitaxel (PTX) from supramolecularly assembled sub-micron particles based on natural macromolecules such as zein, whey, casein, bovine serum albumin (BSA) and conventional stabilizers such as pluronic F-127 (poloxamer 407), and β-cyclodextrin (β-CD) to gain insights into the role of carrier chemistry. For this purpose, nanomedicines with statistically indifferent sizes —in the range of 191.0 ± 0.8 nm (BSA) to 243.3 ± 11.6 nm (zein) were prepared (p > 0.05). The zeta potential values ranged from −3.2 ± 1.1 mV (pluronic F-127) to −17.2 ± 1.8 mV (whey) in phosphate buffered saline. The type of nanocarrier significantly influenced the long-term steady-state plateau of the release, resulting in a cumulative release of 70.3 ± 2.0 % of PTX from casein (the highest) and 46.8 ± 4.7 % of PTX from zein (the lowest). Time-resolved release data were analysed with various kinetical models, encompassing zero-order, first-order, Higuchi, Peppas-Sahlin, and Korsmeyer-Peppas kinetics. The analysis revealed that the Korsmeyer-Peppas model best captured the data. For these nanomedicines, the half-life of the encapsulated drugs was found to be 106.4 ± 31.3 h (zein), 4.7 ± 1.2 h (whey), 10.7 ± 1.8 h (pluronic F-127), 6.4 ± 0.9 h (casein), 10.8 ± 3.2 h (β-CD), and 4.0 ± 1.0 h (BSA). TEM characterization revealed differences in the macromolecular arrangement of the active ingredient within these nanocarriers, in addition to the structural differences among the various encapsulating agents. These differences manifested as variations in the internal nanostructures, leading to the creation of distinct microenvironments that could either facilitate or impede the movement of PTX molecules through the encapsulant matrices. In clinical settings, such fine details of nanocarrier design are important: by choosing the most appropriate nanocarrier (or their mixtures), clinicians can fine-tune drug administration to obtain the intended therapeutic window while mitigating the risk of potential negative reactions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JCIS open
JCIS open Physical and Theoretical Chemistry, Colloid and Surface Chemistry, Surfaces, Coatings and Films
CiteScore
4.10
自引率
0.00%
发文量
0
审稿时长
36 days
期刊最新文献
Polymer-grafted materials as surface-engineered adsorbents for water purification Emergent patterns in shape-asymmetric Quincke rollers A comparative investigation of release kinetics of paclitaxel from natural protein and macromolecular nanocarriers in nanoscale drug delivery systems Quantum chemical modeling of alkane2D monolayer formation on graphene The hydroxypropyl methylcellulose-sorbitol thin film containing a coconut shell of liquid smoke for treating oral ulcer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1