Johan Gustafsson, Erik Larsson, Michael Ljungberg, Katarina Sjögreen Gleisner
{"title":"用于 177Lu 活性定量的 SPECT 采集和重建设置的帕累托优化。","authors":"Johan Gustafsson, Erik Larsson, Michael Ljungberg, Katarina Sjögreen Gleisner","doi":"10.1186/s40658-024-00667-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The aim was to investigate the noise and bias properties of quantitative <sup>177</sup>Lu-SPECT with respect to the number of projection angles, and the number of subsets and iterations in the OS-EM reconstruction, for different total acquisition times.</p><p><strong>Methods: </strong>Experimental SPECT acquisition of six spheres in a NEMA body phantom filled with <sup>177</sup>Lu was performed, using medium-energy collimators and 120 projections with 180 s per projection. Bootstrapping was applied to generate data sets representing acquisitions with 20 to 120 projections for 10 min, 20 min, and 40 min, with 32 noise realizations per setting. Monte Carlo simulations were performed of <sup>177</sup>Lu-DOTA-TATE in an anthropomorphic computer phantom with three tumours (2.8 mL to 40.0 mL). Projections representing 24 h and 168 h post administration were simulated, each with 32 noise realizations. Images were reconstructed using OS-EM with compensation for attenuation, scatter, and distance-dependent resolution. The number of subsets and iterations were varied within a constrained range of the product number of iterations <math><mo>×</mo></math> number of projections <math><mrow><mo>≤</mo> <mn>2400</mn></mrow> </math> . Volumes-of-interest were defined following the physical size of the spheres and tumours, the mean activity-concentrations estimated, and the absolute mean relative error and coefficient of variation (CV) over noise realizations calculated. Pareto fronts were established by analysis of CV versus mean relative error.</p><p><strong>Results: </strong>Points at the Pareto fronts with low CV and high mean error resulted from using a low number of subsets, whilst points at the Pareto fronts associated with high CV but low mean error resulted from reconstructions with a high number of subsets. The number of projection angles had limited impact.</p><p><strong>Conclusions: </strong>For accurate estimation of the <sup>177</sup>Lu activity-concentration from SPECT images, the number of projection angles has limited importance, whilst the total acquisition time and the number of subsets and iterations are parameters of importance.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"62"},"PeriodicalIF":3.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11247071/pdf/","citationCount":"0","resultStr":"{\"title\":\"Pareto optimization of SPECT acquisition and reconstruction settings for <sup>177</sup>Lu activity quantification.\",\"authors\":\"Johan Gustafsson, Erik Larsson, Michael Ljungberg, Katarina Sjögreen Gleisner\",\"doi\":\"10.1186/s40658-024-00667-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The aim was to investigate the noise and bias properties of quantitative <sup>177</sup>Lu-SPECT with respect to the number of projection angles, and the number of subsets and iterations in the OS-EM reconstruction, for different total acquisition times.</p><p><strong>Methods: </strong>Experimental SPECT acquisition of six spheres in a NEMA body phantom filled with <sup>177</sup>Lu was performed, using medium-energy collimators and 120 projections with 180 s per projection. Bootstrapping was applied to generate data sets representing acquisitions with 20 to 120 projections for 10 min, 20 min, and 40 min, with 32 noise realizations per setting. Monte Carlo simulations were performed of <sup>177</sup>Lu-DOTA-TATE in an anthropomorphic computer phantom with three tumours (2.8 mL to 40.0 mL). Projections representing 24 h and 168 h post administration were simulated, each with 32 noise realizations. Images were reconstructed using OS-EM with compensation for attenuation, scatter, and distance-dependent resolution. The number of subsets and iterations were varied within a constrained range of the product number of iterations <math><mo>×</mo></math> number of projections <math><mrow><mo>≤</mo> <mn>2400</mn></mrow> </math> . Volumes-of-interest were defined following the physical size of the spheres and tumours, the mean activity-concentrations estimated, and the absolute mean relative error and coefficient of variation (CV) over noise realizations calculated. Pareto fronts were established by analysis of CV versus mean relative error.</p><p><strong>Results: </strong>Points at the Pareto fronts with low CV and high mean error resulted from using a low number of subsets, whilst points at the Pareto fronts associated with high CV but low mean error resulted from reconstructions with a high number of subsets. The number of projection angles had limited impact.</p><p><strong>Conclusions: </strong>For accurate estimation of the <sup>177</sup>Lu activity-concentration from SPECT images, the number of projection angles has limited importance, whilst the total acquisition time and the number of subsets and iterations are parameters of importance.</p>\",\"PeriodicalId\":11559,\"journal\":{\"name\":\"EJNMMI Physics\",\"volume\":\"11 1\",\"pages\":\"62\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11247071/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EJNMMI Physics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40658-024-00667-7\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EJNMMI Physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40658-024-00667-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Pareto optimization of SPECT acquisition and reconstruction settings for 177Lu activity quantification.
Background: The aim was to investigate the noise and bias properties of quantitative 177Lu-SPECT with respect to the number of projection angles, and the number of subsets and iterations in the OS-EM reconstruction, for different total acquisition times.
Methods: Experimental SPECT acquisition of six spheres in a NEMA body phantom filled with 177Lu was performed, using medium-energy collimators and 120 projections with 180 s per projection. Bootstrapping was applied to generate data sets representing acquisitions with 20 to 120 projections for 10 min, 20 min, and 40 min, with 32 noise realizations per setting. Monte Carlo simulations were performed of 177Lu-DOTA-TATE in an anthropomorphic computer phantom with three tumours (2.8 mL to 40.0 mL). Projections representing 24 h and 168 h post administration were simulated, each with 32 noise realizations. Images were reconstructed using OS-EM with compensation for attenuation, scatter, and distance-dependent resolution. The number of subsets and iterations were varied within a constrained range of the product number of iterations number of projections . Volumes-of-interest were defined following the physical size of the spheres and tumours, the mean activity-concentrations estimated, and the absolute mean relative error and coefficient of variation (CV) over noise realizations calculated. Pareto fronts were established by analysis of CV versus mean relative error.
Results: Points at the Pareto fronts with low CV and high mean error resulted from using a low number of subsets, whilst points at the Pareto fronts associated with high CV but low mean error resulted from reconstructions with a high number of subsets. The number of projection angles had limited impact.
Conclusions: For accurate estimation of the 177Lu activity-concentration from SPECT images, the number of projection angles has limited importance, whilst the total acquisition time and the number of subsets and iterations are parameters of importance.
期刊介绍:
EJNMMI Physics is an international platform for scientists, users and adopters of nuclear medicine with a particular interest in physics matters. As a companion journal to the European Journal of Nuclear Medicine and Molecular Imaging, this journal has a multi-disciplinary approach and welcomes original materials and studies with a focus on applied physics and mathematics as well as imaging systems engineering and prototyping in nuclear medicine. This includes physics-driven approaches or algorithms supported by physics that foster early clinical adoption of nuclear medicine imaging and therapy.