Matthias Mattanovich, Viktor Hesselberg-Thomsen, Annette Lien, Dovydas Vaitkus, Victoria Sara Saad, Douglas McCloskey
{"title":"INCAWrapper:INCA 的 Python 封装器,用于无缝导入、导出和处理数据。","authors":"Matthias Mattanovich, Viktor Hesselberg-Thomsen, Annette Lien, Dovydas Vaitkus, Victoria Sara Saad, Douglas McCloskey","doi":"10.1093/bioadv/vbae100","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>INCA is a powerful tool for metabolic flux analysis, however, import and export of data and results can be tedious and limit the use of INCA in automated workflows.</p><p><strong>Results: </strong>The INCAWrapper enables the use of INCA purely through Python, which allows the use of INCA in common data science workflows.</p><p><strong>Availability and implementation: </strong>The INCAWrapper is implemented in Python and can be found at https://github.com/biosustain/incawrapper. It is freely available under an MIT License. To run INCA, the user needs their own MATLAB and INCA licenses. INCA is freely available for noncommercial use at mfa.vueinnovations.com.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11245311/pdf/","citationCount":"0","resultStr":"{\"title\":\"INCAWrapper: a Python wrapper for INCA for seamless data import, -export, and -processing.\",\"authors\":\"Matthias Mattanovich, Viktor Hesselberg-Thomsen, Annette Lien, Dovydas Vaitkus, Victoria Sara Saad, Douglas McCloskey\",\"doi\":\"10.1093/bioadv/vbae100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>INCA is a powerful tool for metabolic flux analysis, however, import and export of data and results can be tedious and limit the use of INCA in automated workflows.</p><p><strong>Results: </strong>The INCAWrapper enables the use of INCA purely through Python, which allows the use of INCA in common data science workflows.</p><p><strong>Availability and implementation: </strong>The INCAWrapper is implemented in Python and can be found at https://github.com/biosustain/incawrapper. It is freely available under an MIT License. To run INCA, the user needs their own MATLAB and INCA licenses. INCA is freely available for noncommercial use at mfa.vueinnovations.com.</p>\",\"PeriodicalId\":72368,\"journal\":{\"name\":\"Bioinformatics advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11245311/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioadv/vbae100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
INCAWrapper: a Python wrapper for INCA for seamless data import, -export, and -processing.
Motivation: INCA is a powerful tool for metabolic flux analysis, however, import and export of data and results can be tedious and limit the use of INCA in automated workflows.
Results: The INCAWrapper enables the use of INCA purely through Python, which allows the use of INCA in common data science workflows.
Availability and implementation: The INCAWrapper is implemented in Python and can be found at https://github.com/biosustain/incawrapper. It is freely available under an MIT License. To run INCA, the user needs their own MATLAB and INCA licenses. INCA is freely available for noncommercial use at mfa.vueinnovations.com.