Tianyi Chang, Gregory S Gavelis, Julia M Brown, Ramunas Stepanauskas
{"title":"海洋原核浮游生物 SAG 和 MAG 大集合的基因组代表性和嵌合性。","authors":"Tianyi Chang, Gregory S Gavelis, Julia M Brown, Ramunas Stepanauskas","doi":"10.1186/s40168-024-01848-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Single amplified genomes (SAGs) and metagenome-assembled genomes (MAGs) are the predominant sources of information about the coding potential of uncultured microbial lineages, but their strengths and limitations remain poorly understood. Here, we performed a direct comparison of two previously published collections of thousands of SAGs and MAGs obtained from the same, global environment.</p><p><strong>Results: </strong>We found that SAGs were less prone to chimerism and more accurately reflected the relative abundance and the pangenome content of microbial lineages inhabiting the epipelagic of the tropical and subtropical ocean, as compared to MAGs. SAGs were also better suited to link genome information with taxa discovered through 16S rRNA amplicon analyses. Meanwhile, MAGs had the advantage of more readily recovering genomes of rare lineages.</p><p><strong>Conclusions: </strong>Our analyses revealed the relative strengths and weaknesses of the two most commonly used genome recovery approaches in environmental microbiology. These considerations, as well as the need for better tools for genome quality assessment, should be taken into account when designing studies and interpreting data that involve SAGs or MAGs. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":null,"pages":null},"PeriodicalIF":13.8000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11247762/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genomic representativeness and chimerism in large collections of SAGs and MAGs of marine prokaryoplankton.\",\"authors\":\"Tianyi Chang, Gregory S Gavelis, Julia M Brown, Ramunas Stepanauskas\",\"doi\":\"10.1186/s40168-024-01848-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Single amplified genomes (SAGs) and metagenome-assembled genomes (MAGs) are the predominant sources of information about the coding potential of uncultured microbial lineages, but their strengths and limitations remain poorly understood. Here, we performed a direct comparison of two previously published collections of thousands of SAGs and MAGs obtained from the same, global environment.</p><p><strong>Results: </strong>We found that SAGs were less prone to chimerism and more accurately reflected the relative abundance and the pangenome content of microbial lineages inhabiting the epipelagic of the tropical and subtropical ocean, as compared to MAGs. SAGs were also better suited to link genome information with taxa discovered through 16S rRNA amplicon analyses. Meanwhile, MAGs had the advantage of more readily recovering genomes of rare lineages.</p><p><strong>Conclusions: </strong>Our analyses revealed the relative strengths and weaknesses of the two most commonly used genome recovery approaches in environmental microbiology. These considerations, as well as the need for better tools for genome quality assessment, should be taken into account when designing studies and interpreting data that involve SAGs or MAGs. Video Abstract.</p>\",\"PeriodicalId\":18447,\"journal\":{\"name\":\"Microbiome\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":13.8000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11247762/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiome\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s40168-024-01848-3\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40168-024-01848-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
背景:单个扩增基因组(SAGs)和元基因组组装基因组(MAGs)是有关未培养微生物种系编码潜力的主要信息来源,但人们对它们的优势和局限性仍然知之甚少。在这里,我们直接比较了之前发表的两个收集自同一全球环境的数千个 SAG 和 MAG:结果:我们发现,与 MAGs 相比,SAGs 不易出现嵌合现象,而且能更准确地反映栖息在热带和亚热带海洋上层的微生物系的相对丰度和庞基因组含量。SAGs 也更适合将基因组信息与通过 16S rRNA 扩增子分析发现的类群联系起来。同时,MAGs 的优势在于更容易恢复稀有品系的基因组:我们的分析揭示了环境微生物学中最常用的两种基因组恢复方法的相对优缺点。在设计研究和解释涉及 SAG 或 MAG 的数据时,应考虑到这些因素以及对更好的基因组质量评估工具的需求。视频摘要。
Genomic representativeness and chimerism in large collections of SAGs and MAGs of marine prokaryoplankton.
Background: Single amplified genomes (SAGs) and metagenome-assembled genomes (MAGs) are the predominant sources of information about the coding potential of uncultured microbial lineages, but their strengths and limitations remain poorly understood. Here, we performed a direct comparison of two previously published collections of thousands of SAGs and MAGs obtained from the same, global environment.
Results: We found that SAGs were less prone to chimerism and more accurately reflected the relative abundance and the pangenome content of microbial lineages inhabiting the epipelagic of the tropical and subtropical ocean, as compared to MAGs. SAGs were also better suited to link genome information with taxa discovered through 16S rRNA amplicon analyses. Meanwhile, MAGs had the advantage of more readily recovering genomes of rare lineages.
Conclusions: Our analyses revealed the relative strengths and weaknesses of the two most commonly used genome recovery approaches in environmental microbiology. These considerations, as well as the need for better tools for genome quality assessment, should be taken into account when designing studies and interpreting data that involve SAGs or MAGs. Video Abstract.
期刊介绍:
Microbiome is a journal that focuses on studies of microbiomes in humans, animals, plants, and the environment. It covers both natural and manipulated microbiomes, such as those in agriculture. The journal is interested in research that uses meta-omics approaches or novel bioinformatics tools and emphasizes the community/host interaction and structure-function relationship within the microbiome. Studies that go beyond descriptive omics surveys and include experimental or theoretical approaches will be considered for publication. The journal also encourages research that establishes cause and effect relationships and supports proposed microbiome functions. However, studies of individual microbial isolates/species without exploring their impact on the host or the complex microbiome structures and functions will not be considered for publication. Microbiome is indexed in BIOSIS, Current Contents, DOAJ, Embase, MEDLINE, PubMed, PubMed Central, and Science Citations Index Expanded.