{"title":"通过实验验证超宽带元表面对 GPR 系统水平分辨率的改善作用","authors":"Wuan Zheng , Tong Hao , Xiaojing Li , Wenhao Luo","doi":"10.1016/j.ndteint.2024.103179","DOIUrl":null,"url":null,"abstract":"<div><p>Achieving high horizontal resolution is crucial for general non-destructive testing (NDT) applications, and in the domain of ground penetrating radar (GPR), it can be more challenging due to inefficient transmissions of electromagnetic waves into and through complex material under test (MUT). In this study, we showcase the validation results of our recently designed ultra-wideband metasurface (UWM) in improving the horizontal resolution for GPR B-Scan images. This UWM has an ultra-wide working frequency band (100%) from 1 to 3 GHz, in which high-frequency GPR signals can be enhanced and transmitted into MUT. Our fourteen-day consecutive GPR experiments demonstrate that two buried pipes with an edge-to-edge spacing of 8 cm that are hard to distinguish by traditional GPR surveys can be visually identified by depositing the UWM atop the MUT. The underlying mechanism is the sustained and improved transmission of high-frequency signals into the MUT, enabled by the removal of transmission coupling loss by the UWM at the air–MUT interface and the resulting enhanced transmission of more high-frequency components. Our simulations also provide quantitative analysis of such enhanced behavior with a nominal transmittance increase of 30% <span><math><mo>∼</mo></math></span>50%. We believe the horizontal resolution improvement enabled by UWM will open a new corridor for high-resolution GPR system design.</p></div>","PeriodicalId":18868,"journal":{"name":"Ndt & E International","volume":"147 ","pages":"Article 103179"},"PeriodicalIF":4.1000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental validation of the horizontal resolution improvement by ultra-wideband metasurfaces for GPR systems\",\"authors\":\"Wuan Zheng , Tong Hao , Xiaojing Li , Wenhao Luo\",\"doi\":\"10.1016/j.ndteint.2024.103179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Achieving high horizontal resolution is crucial for general non-destructive testing (NDT) applications, and in the domain of ground penetrating radar (GPR), it can be more challenging due to inefficient transmissions of electromagnetic waves into and through complex material under test (MUT). In this study, we showcase the validation results of our recently designed ultra-wideband metasurface (UWM) in improving the horizontal resolution for GPR B-Scan images. This UWM has an ultra-wide working frequency band (100%) from 1 to 3 GHz, in which high-frequency GPR signals can be enhanced and transmitted into MUT. Our fourteen-day consecutive GPR experiments demonstrate that two buried pipes with an edge-to-edge spacing of 8 cm that are hard to distinguish by traditional GPR surveys can be visually identified by depositing the UWM atop the MUT. The underlying mechanism is the sustained and improved transmission of high-frequency signals into the MUT, enabled by the removal of transmission coupling loss by the UWM at the air–MUT interface and the resulting enhanced transmission of more high-frequency components. Our simulations also provide quantitative analysis of such enhanced behavior with a nominal transmittance increase of 30% <span><math><mo>∼</mo></math></span>50%. We believe the horizontal resolution improvement enabled by UWM will open a new corridor for high-resolution GPR system design.</p></div>\",\"PeriodicalId\":18868,\"journal\":{\"name\":\"Ndt & E International\",\"volume\":\"147 \",\"pages\":\"Article 103179\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ndt & E International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0963869524001440\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ndt & E International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0963869524001440","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Experimental validation of the horizontal resolution improvement by ultra-wideband metasurfaces for GPR systems
Achieving high horizontal resolution is crucial for general non-destructive testing (NDT) applications, and in the domain of ground penetrating radar (GPR), it can be more challenging due to inefficient transmissions of electromagnetic waves into and through complex material under test (MUT). In this study, we showcase the validation results of our recently designed ultra-wideband metasurface (UWM) in improving the horizontal resolution for GPR B-Scan images. This UWM has an ultra-wide working frequency band (100%) from 1 to 3 GHz, in which high-frequency GPR signals can be enhanced and transmitted into MUT. Our fourteen-day consecutive GPR experiments demonstrate that two buried pipes with an edge-to-edge spacing of 8 cm that are hard to distinguish by traditional GPR surveys can be visually identified by depositing the UWM atop the MUT. The underlying mechanism is the sustained and improved transmission of high-frequency signals into the MUT, enabled by the removal of transmission coupling loss by the UWM at the air–MUT interface and the resulting enhanced transmission of more high-frequency components. Our simulations also provide quantitative analysis of such enhanced behavior with a nominal transmittance increase of 30% 50%. We believe the horizontal resolution improvement enabled by UWM will open a new corridor for high-resolution GPR system design.
期刊介绍:
NDT&E international publishes peer-reviewed results of original research and development in all categories of the fields of nondestructive testing and evaluation including ultrasonics, electromagnetics, radiography, optical and thermal methods. In addition to traditional NDE topics, the emerging technology area of inspection of civil structures and materials is also emphasized. The journal publishes original papers on research and development of new inspection techniques and methods, as well as on novel and innovative applications of established methods. Papers on NDE sensors and their applications both for inspection and process control, as well as papers describing novel NDE systems for structural health monitoring and their performance in industrial settings are also considered. Other regular features include international news, new equipment and a calendar of forthcoming worldwide meetings. This journal is listed in Current Contents.