{"title":"利用时间聚焦双光子激发的三维超分辨率光学波动成像。","authors":"Pawel Szczypkowski, Monika Pawlowska, Radek Lapkiewicz","doi":"10.1364/BOE.523430","DOIUrl":null,"url":null,"abstract":"<p><p>3D super-resolution fluorescence microscopy typically requires sophisticated setups, sample preparation, or long measurements. A notable exception, SOFI, only requires recording a sequence of frames and no hardware modifications whatsoever but being a wide-field method, it faces problems in thick, dense samples. We combine SOFI with temporal focusing two-photon excitation - the wide-field method that is capable of exciting a thin slice in 3D volume. Temporal focusing is simple to implement whenever the excitation path of the microscope can be accessed. The implementation of SOFI is straightforward. By merging these two methods, we obtain super-resolved 3D images of neurons stained with quantum dots. Our approach offers reduced bleaching of out-of-focus fluorescent probes and an improved signal-to-background ratio that can be used when robust resolution improvement is required in thick, dense samples.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11249675/pdf/","citationCount":"0","resultStr":"{\"title\":\"3D super-resolution optical fluctuation imaging with temporal focusing two-photon excitation.\",\"authors\":\"Pawel Szczypkowski, Monika Pawlowska, Radek Lapkiewicz\",\"doi\":\"10.1364/BOE.523430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>3D super-resolution fluorescence microscopy typically requires sophisticated setups, sample preparation, or long measurements. A notable exception, SOFI, only requires recording a sequence of frames and no hardware modifications whatsoever but being a wide-field method, it faces problems in thick, dense samples. We combine SOFI with temporal focusing two-photon excitation - the wide-field method that is capable of exciting a thin slice in 3D volume. Temporal focusing is simple to implement whenever the excitation path of the microscope can be accessed. The implementation of SOFI is straightforward. By merging these two methods, we obtain super-resolved 3D images of neurons stained with quantum dots. Our approach offers reduced bleaching of out-of-focus fluorescent probes and an improved signal-to-background ratio that can be used when robust resolution improvement is required in thick, dense samples.</p>\",\"PeriodicalId\":8969,\"journal\":{\"name\":\"Biomedical optics express\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11249675/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical optics express\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1364/BOE.523430\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.523430","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
3D super-resolution optical fluctuation imaging with temporal focusing two-photon excitation.
3D super-resolution fluorescence microscopy typically requires sophisticated setups, sample preparation, or long measurements. A notable exception, SOFI, only requires recording a sequence of frames and no hardware modifications whatsoever but being a wide-field method, it faces problems in thick, dense samples. We combine SOFI with temporal focusing two-photon excitation - the wide-field method that is capable of exciting a thin slice in 3D volume. Temporal focusing is simple to implement whenever the excitation path of the microscope can be accessed. The implementation of SOFI is straightforward. By merging these two methods, we obtain super-resolved 3D images of neurons stained with quantum dots. Our approach offers reduced bleaching of out-of-focus fluorescent probes and an improved signal-to-background ratio that can be used when robust resolution improvement is required in thick, dense samples.
期刊介绍:
The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including:
Tissue optics and spectroscopy
Novel microscopies
Optical coherence tomography
Diffuse and fluorescence tomography
Photoacoustic and multimodal imaging
Molecular imaging and therapies
Nanophotonic biosensing
Optical biophysics/photobiology
Microfluidic optical devices
Vision research.