{"title":"用于放射治疗的计算机断层扫描图像中脑转移瘤总体积的改进型自动分割:U-Net 架构的位置关注模块。","authors":"Yiren Wang, Yiheng Hu, Shouying Chen, Hairui Deng, Zhongjian Wen, Yongcheng He, Huaiwen Zhang, Ping Zhou, Haowen Pang","doi":"10.21037/qims-23-1627","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Brain metastases present significant challenges in radiotherapy due to the need for precise tumor delineation. Traditional methods often lack the efficiency and accuracy required for optimal treatment planning. This paper proposes an improved U-Net model that uses a position attention module (PAM) for automated segmentation of gross tumor volumes (GTVs) in computed tomography (CT) simulation images of patients with brain metastases to improve the efficiency and accuracy of radiotherapy planning and segmentation.</p><p><strong>Methods: </strong>We retrospectively collected CT simulation imaging datasets of patients with brain metastases from two centers, which were designated as the training and external validation datasets. The U-Net architecture was enhanced by incorporating a PAM into the transition layer, which improved the automated segmentation capability of the U-Net model. With cross-entropy loss employed as the loss function, the samples from the training dataset underwent training. The model's segmentation performance on the external validation dataset was assessed using metrics including the Dice similarity coefficient (DSC), intersection over union (IoU), accuracy, sensitivity, specificity, Matthews correlation coefficient (MCC), and Hausdorff distance (HD).</p><p><strong>Results: </strong>The proposed automated segmentation model demonstrated promising performance on the external validation dataset, achieving a DSC of 0.753±0.172. In terms of evaluation metrics (including the DSC, IoU, accuracy, sensitivity, MCC, and HD), the model outperformed the standard U-Net, which had a DSC of 0.691±0.142. The proposed model produced segmentation results that were closer to the ground truth and could reveal more detailed features of brain metastases.</p><p><strong>Conclusions: </strong>The PAM-improved U-Net model offers considerable advantages in the automated segmentation of the GTV in CT simulation images for patients with brain metastases. Its superior performance in comparison with the standard U-Net model supports its potential for streamlining and improving the accuracy of radiotherapy. With its ability to produce segmentation results consistent with the ground truth, the proposed model holds promise for clinical adoption and provides a reference for radiation oncologists to make more informed GTV segmentation decisions.</p>","PeriodicalId":54267,"journal":{"name":"Quantitative Imaging in Medicine and Surgery","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11250326/pdf/","citationCount":"0","resultStr":"{\"title\":\"Improved automatic segmentation of brain metastasis gross tumor volume in computed tomography images for radiotherapy: a position attention module for U-Net architecture.\",\"authors\":\"Yiren Wang, Yiheng Hu, Shouying Chen, Hairui Deng, Zhongjian Wen, Yongcheng He, Huaiwen Zhang, Ping Zhou, Haowen Pang\",\"doi\":\"10.21037/qims-23-1627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Brain metastases present significant challenges in radiotherapy due to the need for precise tumor delineation. Traditional methods often lack the efficiency and accuracy required for optimal treatment planning. This paper proposes an improved U-Net model that uses a position attention module (PAM) for automated segmentation of gross tumor volumes (GTVs) in computed tomography (CT) simulation images of patients with brain metastases to improve the efficiency and accuracy of radiotherapy planning and segmentation.</p><p><strong>Methods: </strong>We retrospectively collected CT simulation imaging datasets of patients with brain metastases from two centers, which were designated as the training and external validation datasets. The U-Net architecture was enhanced by incorporating a PAM into the transition layer, which improved the automated segmentation capability of the U-Net model. With cross-entropy loss employed as the loss function, the samples from the training dataset underwent training. The model's segmentation performance on the external validation dataset was assessed using metrics including the Dice similarity coefficient (DSC), intersection over union (IoU), accuracy, sensitivity, specificity, Matthews correlation coefficient (MCC), and Hausdorff distance (HD).</p><p><strong>Results: </strong>The proposed automated segmentation model demonstrated promising performance on the external validation dataset, achieving a DSC of 0.753±0.172. In terms of evaluation metrics (including the DSC, IoU, accuracy, sensitivity, MCC, and HD), the model outperformed the standard U-Net, which had a DSC of 0.691±0.142. The proposed model produced segmentation results that were closer to the ground truth and could reveal more detailed features of brain metastases.</p><p><strong>Conclusions: </strong>The PAM-improved U-Net model offers considerable advantages in the automated segmentation of the GTV in CT simulation images for patients with brain metastases. Its superior performance in comparison with the standard U-Net model supports its potential for streamlining and improving the accuracy of radiotherapy. With its ability to produce segmentation results consistent with the ground truth, the proposed model holds promise for clinical adoption and provides a reference for radiation oncologists to make more informed GTV segmentation decisions.</p>\",\"PeriodicalId\":54267,\"journal\":{\"name\":\"Quantitative Imaging in Medicine and Surgery\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11250326/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantitative Imaging in Medicine and Surgery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.21037/qims-23-1627\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Imaging in Medicine and Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21037/qims-23-1627","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Improved automatic segmentation of brain metastasis gross tumor volume in computed tomography images for radiotherapy: a position attention module for U-Net architecture.
Background: Brain metastases present significant challenges in radiotherapy due to the need for precise tumor delineation. Traditional methods often lack the efficiency and accuracy required for optimal treatment planning. This paper proposes an improved U-Net model that uses a position attention module (PAM) for automated segmentation of gross tumor volumes (GTVs) in computed tomography (CT) simulation images of patients with brain metastases to improve the efficiency and accuracy of radiotherapy planning and segmentation.
Methods: We retrospectively collected CT simulation imaging datasets of patients with brain metastases from two centers, which were designated as the training and external validation datasets. The U-Net architecture was enhanced by incorporating a PAM into the transition layer, which improved the automated segmentation capability of the U-Net model. With cross-entropy loss employed as the loss function, the samples from the training dataset underwent training. The model's segmentation performance on the external validation dataset was assessed using metrics including the Dice similarity coefficient (DSC), intersection over union (IoU), accuracy, sensitivity, specificity, Matthews correlation coefficient (MCC), and Hausdorff distance (HD).
Results: The proposed automated segmentation model demonstrated promising performance on the external validation dataset, achieving a DSC of 0.753±0.172. In terms of evaluation metrics (including the DSC, IoU, accuracy, sensitivity, MCC, and HD), the model outperformed the standard U-Net, which had a DSC of 0.691±0.142. The proposed model produced segmentation results that were closer to the ground truth and could reveal more detailed features of brain metastases.
Conclusions: The PAM-improved U-Net model offers considerable advantages in the automated segmentation of the GTV in CT simulation images for patients with brain metastases. Its superior performance in comparison with the standard U-Net model supports its potential for streamlining and improving the accuracy of radiotherapy. With its ability to produce segmentation results consistent with the ground truth, the proposed model holds promise for clinical adoption and provides a reference for radiation oncologists to make more informed GTV segmentation decisions.