Mohd Rahil Hasan , Pradakshina Sharma , Saumitra Singh , Sushil Kumar , Shivani , Kirti Rani , Jagriti Narang
{"title":"基于不同电极系统的电化学适体传感器用于检测人血清中的登革热病毒抗原:比较研究","authors":"Mohd Rahil Hasan , Pradakshina Sharma , Saumitra Singh , Sushil Kumar , Shivani , Kirti Rani , Jagriti Narang","doi":"10.1016/j.sintl.2024.100285","DOIUrl":null,"url":null,"abstract":"<div><p>The current study demonstrates the manufacturing of highly sensitive aptasensr for the robust and effective detection of dengue virus antigen. The proposed electrochemical aptasensor employs both types of electrodes, namely commercialized screen-printed electrodes (C-SPEs) and self-fabricated screen-printed electrodes (SF-SPEs), were efficiently diagnose dengue virus antigen (DENV-Ag) and shows a lower limit of detection (LOD) i.e., 0.1 μg/ml. Both the electrode types were coated with chemically synthesized ZnO-Nanomaterial, which aids in electron transport, and to make it more selective highly specific DNA-aptamer was used against the DENV antigen. SEM and Uv–Vis spectra approaches were used to characterize the synthesized nanomaterial. To confirm the DENV-antigen detection results, electrochemical analysis was performed and the sensor cross-reactivity was also checked by a close member of the dengue virus i.e., chikungunya virus (CHIKV). The developed platform based on SF-SPEs & C-SPEs performed well in human serum. This investigation found that the SF-SPEs system had advanced sensitivity and responded very well to the C-SPEs. Consequently, the SF-SPEs system has emerged as a feasible choice for low-cost and highly sensitive DENV-detection and is also applicable for other analytes diagnostics.</p></div>","PeriodicalId":21733,"journal":{"name":"Sensors International","volume":"5 ","pages":"Article 100285"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266635112400007X/pdfft?md5=c85de218149fb654ff7d09589bda8f44&pid=1-s2.0-S266635112400007X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Different electrode system based electrochemical aptasensor for the detection of dengue virus antigen in human serum: A comparative study\",\"authors\":\"Mohd Rahil Hasan , Pradakshina Sharma , Saumitra Singh , Sushil Kumar , Shivani , Kirti Rani , Jagriti Narang\",\"doi\":\"10.1016/j.sintl.2024.100285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The current study demonstrates the manufacturing of highly sensitive aptasensr for the robust and effective detection of dengue virus antigen. The proposed electrochemical aptasensor employs both types of electrodes, namely commercialized screen-printed electrodes (C-SPEs) and self-fabricated screen-printed electrodes (SF-SPEs), were efficiently diagnose dengue virus antigen (DENV-Ag) and shows a lower limit of detection (LOD) i.e., 0.1 μg/ml. Both the electrode types were coated with chemically synthesized ZnO-Nanomaterial, which aids in electron transport, and to make it more selective highly specific DNA-aptamer was used against the DENV antigen. SEM and Uv–Vis spectra approaches were used to characterize the synthesized nanomaterial. To confirm the DENV-antigen detection results, electrochemical analysis was performed and the sensor cross-reactivity was also checked by a close member of the dengue virus i.e., chikungunya virus (CHIKV). The developed platform based on SF-SPEs & C-SPEs performed well in human serum. This investigation found that the SF-SPEs system had advanced sensitivity and responded very well to the C-SPEs. Consequently, the SF-SPEs system has emerged as a feasible choice for low-cost and highly sensitive DENV-detection and is also applicable for other analytes diagnostics.</p></div>\",\"PeriodicalId\":21733,\"journal\":{\"name\":\"Sensors International\",\"volume\":\"5 \",\"pages\":\"Article 100285\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S266635112400007X/pdfft?md5=c85de218149fb654ff7d09589bda8f44&pid=1-s2.0-S266635112400007X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors International\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266635112400007X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors International","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266635112400007X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Different electrode system based electrochemical aptasensor for the detection of dengue virus antigen in human serum: A comparative study
The current study demonstrates the manufacturing of highly sensitive aptasensr for the robust and effective detection of dengue virus antigen. The proposed electrochemical aptasensor employs both types of electrodes, namely commercialized screen-printed electrodes (C-SPEs) and self-fabricated screen-printed electrodes (SF-SPEs), were efficiently diagnose dengue virus antigen (DENV-Ag) and shows a lower limit of detection (LOD) i.e., 0.1 μg/ml. Both the electrode types were coated with chemically synthesized ZnO-Nanomaterial, which aids in electron transport, and to make it more selective highly specific DNA-aptamer was used against the DENV antigen. SEM and Uv–Vis spectra approaches were used to characterize the synthesized nanomaterial. To confirm the DENV-antigen detection results, electrochemical analysis was performed and the sensor cross-reactivity was also checked by a close member of the dengue virus i.e., chikungunya virus (CHIKV). The developed platform based on SF-SPEs & C-SPEs performed well in human serum. This investigation found that the SF-SPEs system had advanced sensitivity and responded very well to the C-SPEs. Consequently, the SF-SPEs system has emerged as a feasible choice for low-cost and highly sensitive DENV-detection and is also applicable for other analytes diagnostics.