通过化学气相沉积实现过渡金属二卤化物原子层几何控制的物理策略

Jing Yi Tee, Mark John, Wei Fu, Thathsara D. Maddumapatabandi, Fabio Bussolotti, Calvin Pei Yu Wong, Kuan Eng Johnson Goh
{"title":"通过化学气相沉积实现过渡金属二卤化物原子层几何控制的物理策略","authors":"Jing Yi Tee,&nbsp;Mark John,&nbsp;Wei Fu,&nbsp;Thathsara D. Maddumapatabandi,&nbsp;Fabio Bussolotti,&nbsp;Calvin Pei Yu Wong,&nbsp;Kuan Eng Johnson Goh","doi":"10.1002/apxr.202300146","DOIUrl":null,"url":null,"abstract":"<p>The diverse morphologies of 2D transition metal dichalcogenides (2D TMDs) motivate their broad potential applications in the next generation of electronic, optical, and catalytic technologies. It is advantageous to develop controllable growth techniques that afford versatility through direct manipulation of the growth parameters. A fundamental understanding of the physical mechanisms driving various growth modes is crucial for achieving the process precision necessary for obtaining reproducible morphologies in 2D TMDs. Thermodynamic and kinetic considerations are two key physical strategies. Thermodynamic strategies mainly involve the manipulation of parameters like temperature and the chemical potential of precursors to ensure the thermostability of various morphologies. Conversely, kinetic strategies, focusing on the factors, like precursor diffusion, adsorption, and desorption during the growth, also enable atomic-level kinetics control of the resulting morphologies. Often, an interplay of both mechanisms drives the growth of a particular morphology. This review aims to provide an updated guidance for exploiting these physical strategies in the versatile technique of chemical vapor deposition. The opportunities for further exploring the control of these physical mechanisms are discussed through recent examples with an eye on unlocking the untapped potential of 2D TMDs in areas such as phase engineering and shape control for advanced applications.</p>","PeriodicalId":100035,"journal":{"name":"Advanced Physics Research","volume":"3 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202300146","citationCount":"0","resultStr":"{\"title\":\"Physical Strategies for Geometric Control of Transition Metal Dichalcogenide Atomic Layers by Chemical Vapor Deposition\",\"authors\":\"Jing Yi Tee,&nbsp;Mark John,&nbsp;Wei Fu,&nbsp;Thathsara D. Maddumapatabandi,&nbsp;Fabio Bussolotti,&nbsp;Calvin Pei Yu Wong,&nbsp;Kuan Eng Johnson Goh\",\"doi\":\"10.1002/apxr.202300146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The diverse morphologies of 2D transition metal dichalcogenides (2D TMDs) motivate their broad potential applications in the next generation of electronic, optical, and catalytic technologies. It is advantageous to develop controllable growth techniques that afford versatility through direct manipulation of the growth parameters. A fundamental understanding of the physical mechanisms driving various growth modes is crucial for achieving the process precision necessary for obtaining reproducible morphologies in 2D TMDs. Thermodynamic and kinetic considerations are two key physical strategies. Thermodynamic strategies mainly involve the manipulation of parameters like temperature and the chemical potential of precursors to ensure the thermostability of various morphologies. Conversely, kinetic strategies, focusing on the factors, like precursor diffusion, adsorption, and desorption during the growth, also enable atomic-level kinetics control of the resulting morphologies. Often, an interplay of both mechanisms drives the growth of a particular morphology. This review aims to provide an updated guidance for exploiting these physical strategies in the versatile technique of chemical vapor deposition. The opportunities for further exploring the control of these physical mechanisms are discussed through recent examples with an eye on unlocking the untapped potential of 2D TMDs in areas such as phase engineering and shape control for advanced applications.</p>\",\"PeriodicalId\":100035,\"journal\":{\"name\":\"Advanced Physics Research\",\"volume\":\"3 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202300146\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Physics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/apxr.202300146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Physics Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/apxr.202300146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

二维过渡金属二掺杂物(2D TMDs)形态各异,因此在下一代电子、光学和催化技术中具有广泛的应用潜力。开发可控生长技术,通过直接操纵生长参数实现多功能性,是非常有利的。从根本上了解驱动各种生长模式的物理机制,对于实现二维 TMD 可重现形态所需的工艺精度至关重要。热力学和动力学是两种关键的物理策略。热力学策略主要涉及对温度和前驱体化学势等参数的控制,以确保各种形态的热稳定性。相反,动力学策略侧重于前驱体在生长过程中的扩散、吸附和解吸等因素,也能对所产生的形态进行原子级动力学控制。通常,两种机制的相互作用会推动特定形态的生长。本综述旨在为在化学气相沉积这一多功能技术中利用这些物理策略提供最新指导。通过最近的实例讨论了进一步探索控制这些物理机制的机会,着眼于发掘二维 TMD 在相工程和形状控制等先进应用领域尚未开发的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Physical Strategies for Geometric Control of Transition Metal Dichalcogenide Atomic Layers by Chemical Vapor Deposition

The diverse morphologies of 2D transition metal dichalcogenides (2D TMDs) motivate their broad potential applications in the next generation of electronic, optical, and catalytic technologies. It is advantageous to develop controllable growth techniques that afford versatility through direct manipulation of the growth parameters. A fundamental understanding of the physical mechanisms driving various growth modes is crucial for achieving the process precision necessary for obtaining reproducible morphologies in 2D TMDs. Thermodynamic and kinetic considerations are two key physical strategies. Thermodynamic strategies mainly involve the manipulation of parameters like temperature and the chemical potential of precursors to ensure the thermostability of various morphologies. Conversely, kinetic strategies, focusing on the factors, like precursor diffusion, adsorption, and desorption during the growth, also enable atomic-level kinetics control of the resulting morphologies. Often, an interplay of both mechanisms drives the growth of a particular morphology. This review aims to provide an updated guidance for exploiting these physical strategies in the versatile technique of chemical vapor deposition. The opportunities for further exploring the control of these physical mechanisms are discussed through recent examples with an eye on unlocking the untapped potential of 2D TMDs in areas such as phase engineering and shape control for advanced applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Topological Insulator Nanowires Made by AFM Nanopatterning: Fabrication Process and Ultra Low-Temperature Transport Properties (Adv. Phys. Res. 12/2024) Masthead (Adv. Phys. Res. 12/2024) Epithelial Folding Through Local Degradation of an Elastic Basement Membrane Plate Observation of Thermally Induced Piezomagnetic Switching in Cu2OSeO3 Polymorph Synthesized under High-Pressure (Adv. Phys. Res. 11/2024) Exploring Green Fluorescent Protein Brownian Motion: Temperature and Concentration Dependencies Through Luminescence Thermometry (Adv. Phys. Res. 11/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1