D. Martínez‐Moreno, A. Callejas, Gema Jiménez, P. Gálvez-Martín, Guillermo Rus, Juan Antonio Marchal
{"title":"基于低剪切应力的生物反应器诱导和实时超声监测三维软骨样组织","authors":"D. Martínez‐Moreno, A. Callejas, Gema Jiménez, P. Gálvez-Martín, Guillermo Rus, Juan Antonio Marchal","doi":"10.36922/ijb.3389","DOIUrl":null,"url":null,"abstract":"Osteoarthritis is a significant socioeconomic illness that mainly affects the articular cartilage, a tissue with a low capacity for self-healing, making it an ideal target for regenerative medicine and tissue engineering. Current interventions to treat cartilage injuries may not be completely effective. In this study, we have developed a novel bioreactor that creates viscous shear stress by flow perfusion. This bioreactor could induce ex vivo maturation of biomimetic 3D cartilage scaffolds, providing a potential solution to this problem. Infrapatellar fat pad mesenchymal stem cells (IPFP-MSCs) were used as a cellular source of the functionalized 3D scaffolds made of 1,4-butanediol thermoplastic polyurethane (bTPUe) modified with pyrene butyric acid (PBA). Our results indicate that our bioreactor induced chondrogenic differentiation, as confirmed by DNA quantification, extracellular matrix determination, and metabolic assay, without any conditioned medium. To control the biomechanical stimulation on IPFP-MSCs, a low-intensity ultrasonic transmission system has been developed and embedded in the bioreactor. Combined with a finite element model (FEM), tissue growth and differentiation can be deconvoluted in real-time from the recorded ultrasonic propagation and interaction across the graft. The FEM reconstructs this complex interaction. This is the first time a low-shear stress-based bioreactor has been reported to not only induce chondrogenic evolution but also monitor it in real time.","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\" Induction and real-time ultrasonic monitoring of 3D cartilage-like tissue by a low shear stresses-based bioreactor\",\"authors\":\"D. Martínez‐Moreno, A. Callejas, Gema Jiménez, P. Gálvez-Martín, Guillermo Rus, Juan Antonio Marchal\",\"doi\":\"10.36922/ijb.3389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Osteoarthritis is a significant socioeconomic illness that mainly affects the articular cartilage, a tissue with a low capacity for self-healing, making it an ideal target for regenerative medicine and tissue engineering. Current interventions to treat cartilage injuries may not be completely effective. In this study, we have developed a novel bioreactor that creates viscous shear stress by flow perfusion. This bioreactor could induce ex vivo maturation of biomimetic 3D cartilage scaffolds, providing a potential solution to this problem. Infrapatellar fat pad mesenchymal stem cells (IPFP-MSCs) were used as a cellular source of the functionalized 3D scaffolds made of 1,4-butanediol thermoplastic polyurethane (bTPUe) modified with pyrene butyric acid (PBA). Our results indicate that our bioreactor induced chondrogenic differentiation, as confirmed by DNA quantification, extracellular matrix determination, and metabolic assay, without any conditioned medium. To control the biomechanical stimulation on IPFP-MSCs, a low-intensity ultrasonic transmission system has been developed and embedded in the bioreactor. Combined with a finite element model (FEM), tissue growth and differentiation can be deconvoluted in real-time from the recorded ultrasonic propagation and interaction across the graft. The FEM reconstructs this complex interaction. This is the first time a low-shear stress-based bioreactor has been reported to not only induce chondrogenic evolution but also monitor it in real time.\",\"PeriodicalId\":48522,\"journal\":{\"name\":\"International Journal of Bioprinting\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Bioprinting\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.36922/ijb.3389\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bioprinting","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.36922/ijb.3389","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Induction and real-time ultrasonic monitoring of 3D cartilage-like tissue by a low shear stresses-based bioreactor
Osteoarthritis is a significant socioeconomic illness that mainly affects the articular cartilage, a tissue with a low capacity for self-healing, making it an ideal target for regenerative medicine and tissue engineering. Current interventions to treat cartilage injuries may not be completely effective. In this study, we have developed a novel bioreactor that creates viscous shear stress by flow perfusion. This bioreactor could induce ex vivo maturation of biomimetic 3D cartilage scaffolds, providing a potential solution to this problem. Infrapatellar fat pad mesenchymal stem cells (IPFP-MSCs) were used as a cellular source of the functionalized 3D scaffolds made of 1,4-butanediol thermoplastic polyurethane (bTPUe) modified with pyrene butyric acid (PBA). Our results indicate that our bioreactor induced chondrogenic differentiation, as confirmed by DNA quantification, extracellular matrix determination, and metabolic assay, without any conditioned medium. To control the biomechanical stimulation on IPFP-MSCs, a low-intensity ultrasonic transmission system has been developed and embedded in the bioreactor. Combined with a finite element model (FEM), tissue growth and differentiation can be deconvoluted in real-time from the recorded ultrasonic propagation and interaction across the graft. The FEM reconstructs this complex interaction. This is the first time a low-shear stress-based bioreactor has been reported to not only induce chondrogenic evolution but also monitor it in real time.
期刊介绍:
The International Journal of Bioprinting is a globally recognized publication that focuses on the advancements, scientific discoveries, and practical implementations of Bioprinting. Bioprinting, in simple terms, involves the utilization of 3D printing technology and materials that contain living cells or biological components to fabricate tissues or other biotechnological products. Our journal encompasses interdisciplinary research that spans across technology, science, and clinical applications within the expansive realm of Bioprinting.