Nur Izzah Md Fadilah, Nur Aifa Asyhira Khairul Nizam, M. B. Fauzi
{"title":"通过三维生物打印技术将抗菌化合物融入功能性生物材料,用于慢性伤口愈合:作用机制","authors":"Nur Izzah Md Fadilah, Nur Aifa Asyhira Khairul Nizam, M. B. Fauzi","doi":"10.36922/ijb.3372","DOIUrl":null,"url":null,"abstract":"Wounds represent a critical issue in the healthcare industry since they are highly susceptible to infections that in turn lead to more serious complications. With bacterial infections gradually growing to be a challenge to wound healing, fighting bacterial resistance has become one of the important pillars of addressing issues faced by healthcare personnel. Thus, gaining an understanding of the distinct stages of wound healing is vital to further improve relevant therapies incorporating the application of antibacterial compounds. Recently, three-dimensional (3D)-printed functional biomaterials have emerged as an alternative treatment or potential carriers incorporating relevant antibacterial agents, offering a new approach to skin tissue engineering. Novel strategies for skin tissue engineering are grounded in the integration of bioactive ingredients and antibacterial agents into biomaterials with different morphologies to improve cell behaviors and promote wound healing by preventing bacterial colonization. This paper reviews the function of natural and synthetic polymers, effects of antibacterial properties, and cell interactions in terms of the wound healing process. Extensive research has demonstrated that 3D functional biomaterials exert their therapeutic effects through multifaceted pathways, including but not limited to, modulating inflammation, facilitating tissue regeneration, promoting cell proliferation, enhancing angiogenesis, and controlling infection. This review also provides general insights into the elegant design for 3D scaffold and further refinement of wound dressing.","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antibacterial compounds-incorporated functional biomaterials for chronic wound healing application via 3D bioprinting: The mechanism of action\",\"authors\":\"Nur Izzah Md Fadilah, Nur Aifa Asyhira Khairul Nizam, M. B. Fauzi\",\"doi\":\"10.36922/ijb.3372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wounds represent a critical issue in the healthcare industry since they are highly susceptible to infections that in turn lead to more serious complications. With bacterial infections gradually growing to be a challenge to wound healing, fighting bacterial resistance has become one of the important pillars of addressing issues faced by healthcare personnel. Thus, gaining an understanding of the distinct stages of wound healing is vital to further improve relevant therapies incorporating the application of antibacterial compounds. Recently, three-dimensional (3D)-printed functional biomaterials have emerged as an alternative treatment or potential carriers incorporating relevant antibacterial agents, offering a new approach to skin tissue engineering. Novel strategies for skin tissue engineering are grounded in the integration of bioactive ingredients and antibacterial agents into biomaterials with different morphologies to improve cell behaviors and promote wound healing by preventing bacterial colonization. This paper reviews the function of natural and synthetic polymers, effects of antibacterial properties, and cell interactions in terms of the wound healing process. Extensive research has demonstrated that 3D functional biomaterials exert their therapeutic effects through multifaceted pathways, including but not limited to, modulating inflammation, facilitating tissue regeneration, promoting cell proliferation, enhancing angiogenesis, and controlling infection. This review also provides general insights into the elegant design for 3D scaffold and further refinement of wound dressing.\",\"PeriodicalId\":48522,\"journal\":{\"name\":\"International Journal of Bioprinting\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Bioprinting\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.36922/ijb.3372\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bioprinting","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.36922/ijb.3372","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Antibacterial compounds-incorporated functional biomaterials for chronic wound healing application via 3D bioprinting: The mechanism of action
Wounds represent a critical issue in the healthcare industry since they are highly susceptible to infections that in turn lead to more serious complications. With bacterial infections gradually growing to be a challenge to wound healing, fighting bacterial resistance has become one of the important pillars of addressing issues faced by healthcare personnel. Thus, gaining an understanding of the distinct stages of wound healing is vital to further improve relevant therapies incorporating the application of antibacterial compounds. Recently, three-dimensional (3D)-printed functional biomaterials have emerged as an alternative treatment or potential carriers incorporating relevant antibacterial agents, offering a new approach to skin tissue engineering. Novel strategies for skin tissue engineering are grounded in the integration of bioactive ingredients and antibacterial agents into biomaterials with different morphologies to improve cell behaviors and promote wound healing by preventing bacterial colonization. This paper reviews the function of natural and synthetic polymers, effects of antibacterial properties, and cell interactions in terms of the wound healing process. Extensive research has demonstrated that 3D functional biomaterials exert their therapeutic effects through multifaceted pathways, including but not limited to, modulating inflammation, facilitating tissue regeneration, promoting cell proliferation, enhancing angiogenesis, and controlling infection. This review also provides general insights into the elegant design for 3D scaffold and further refinement of wound dressing.
期刊介绍:
The International Journal of Bioprinting is a globally recognized publication that focuses on the advancements, scientific discoveries, and practical implementations of Bioprinting. Bioprinting, in simple terms, involves the utilization of 3D printing technology and materials that contain living cells or biological components to fabricate tissues or other biotechnological products. Our journal encompasses interdisciplinary research that spans across technology, science, and clinical applications within the expansive realm of Bioprinting.