Geoffrey S. Gray, Scott J. Ormiston, Hassan M. Soliman
{"title":"气力提升泵中两相流动的 3D URANS 详细分析","authors":"Geoffrey S. Gray, Scott J. Ormiston, Hassan M. Soliman","doi":"10.1016/j.euromechflu.2024.07.011","DOIUrl":null,"url":null,"abstract":"<div><p>An airlift pump is a vertical tube that utilizes the buoyant effects of a gas to lift a liquid. Unlike a standard mechanical pump, the liquid flow rate through the airlift pump is not directly controlled; rather, it depends on the supplied gas flow rate, the tube length and diameter, and the relative height of the liquid supply free surface (submergence ratio). The present study uses the commercial CFD code ANSYS CFX to model the isothermal, 3D, transient flow in an airlift pump using water and air. The model applies pressure boundary conditions at both ends of the tube and specifies the mass flow rate of air through multiple openings in the side of the tube. The bottom of the tube is an inlet of water only and the outlet is a two-phase flow opening. A time-dependent, homogeneous, VOF two-phase RANS CFD modelling approach is used with the air treated as an ideal gas. This work found that a complete 3D domain was necessary for consistent prediction of the airlift performance and physically realistic two-phase flow structures. Statistical analysis of the two-phase flow structures was applied to characterize airlift pump instability and better understand the physics of the airlift pump.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"108 ","pages":"Pages 134-150"},"PeriodicalIF":2.5000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detailed 3D URANS analysis of two-phase flow in an airlift pump\",\"authors\":\"Geoffrey S. Gray, Scott J. Ormiston, Hassan M. Soliman\",\"doi\":\"10.1016/j.euromechflu.2024.07.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An airlift pump is a vertical tube that utilizes the buoyant effects of a gas to lift a liquid. Unlike a standard mechanical pump, the liquid flow rate through the airlift pump is not directly controlled; rather, it depends on the supplied gas flow rate, the tube length and diameter, and the relative height of the liquid supply free surface (submergence ratio). The present study uses the commercial CFD code ANSYS CFX to model the isothermal, 3D, transient flow in an airlift pump using water and air. The model applies pressure boundary conditions at both ends of the tube and specifies the mass flow rate of air through multiple openings in the side of the tube. The bottom of the tube is an inlet of water only and the outlet is a two-phase flow opening. A time-dependent, homogeneous, VOF two-phase RANS CFD modelling approach is used with the air treated as an ideal gas. This work found that a complete 3D domain was necessary for consistent prediction of the airlift performance and physically realistic two-phase flow structures. Statistical analysis of the two-phase flow structures was applied to characterize airlift pump instability and better understand the physics of the airlift pump.</p></div>\",\"PeriodicalId\":11985,\"journal\":{\"name\":\"European Journal of Mechanics B-fluids\",\"volume\":\"108 \",\"pages\":\"Pages 134-150\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Mechanics B-fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0997754624000992\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics B-fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997754624000992","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Detailed 3D URANS analysis of two-phase flow in an airlift pump
An airlift pump is a vertical tube that utilizes the buoyant effects of a gas to lift a liquid. Unlike a standard mechanical pump, the liquid flow rate through the airlift pump is not directly controlled; rather, it depends on the supplied gas flow rate, the tube length and diameter, and the relative height of the liquid supply free surface (submergence ratio). The present study uses the commercial CFD code ANSYS CFX to model the isothermal, 3D, transient flow in an airlift pump using water and air. The model applies pressure boundary conditions at both ends of the tube and specifies the mass flow rate of air through multiple openings in the side of the tube. The bottom of the tube is an inlet of water only and the outlet is a two-phase flow opening. A time-dependent, homogeneous, VOF two-phase RANS CFD modelling approach is used with the air treated as an ideal gas. This work found that a complete 3D domain was necessary for consistent prediction of the airlift performance and physically realistic two-phase flow structures. Statistical analysis of the two-phase flow structures was applied to characterize airlift pump instability and better understand the physics of the airlift pump.
期刊介绍:
The European Journal of Mechanics - B/Fluids publishes papers in all fields of fluid mechanics. Although investigations in well-established areas are within the scope of the journal, recent developments and innovative ideas are particularly welcome. Theoretical, computational and experimental papers are equally welcome. Mathematical methods, be they deterministic or stochastic, analytical or numerical, will be accepted provided they serve to clarify some identifiable problems in fluid mechanics, and provided the significance of results is explained. Similarly, experimental papers must add physical insight in to the understanding of fluid mechanics.