{"title":"蛋白质稳态和细胞壁重塑对茉莉酸盐和赤霉素信号的响应提高了大豆(Glycine max L.)的耐淹性","authors":"","doi":"10.1016/j.envexpbot.2024.105902","DOIUrl":null,"url":null,"abstract":"<div><p>The establishment of soybean seedlings is sensitive to flooding, and colocalization of proteins and quantitative trait loci (QTLs) advances to narrow down the hub genes. To reveal soybean seedling tolerance to flooding, Qihuang34 (QH34), Jidou17(JD17), and their recombinant inbred lines were used in this study. Severe plant death, shorter root length, and more stress-induced proteins were observed in JD7 compared to QH34 under flooding. The major functional categories of proteins altered by flooding were similar in both cultivars, and formed a cohesive network. Protein abundance and gene expression of ribosomal protein S3 decreased in flooded JD17 compared to QH34. Through proteomics and QTL mapping, beta-glucosidase 44 and dehydrin were involved in flood tolerance. Beta-glucosidase 44 abundance, beta-glucosidase activity, and glucose content decreased in QH34 compared to JD17 during flooding. The dehydrin contained the <em>cis-</em>acting elements of methyl jasmonate (Me-JA) and gibberellin (GA), accompanied by increased levels of Me-JA and GA<sub>3</sub> in flooded QH34 and JD17, respectively. These findings suggest that integrating proteomics with QTL is advantageous to identify genes associated with flood tolerance, proposing that enhanced protein homeostasis and cell wall stiffening in root tips may confer soybean seedling tolerance to flooding via GA and JA signals.</p></div>","PeriodicalId":11758,"journal":{"name":"Environmental and Experimental Botany","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protein homeostasis and cell wall remodeling in response to jasmonate and gibberellin signals improve flood tolerance in soybean (Glycine max L.)\",\"authors\":\"\",\"doi\":\"10.1016/j.envexpbot.2024.105902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The establishment of soybean seedlings is sensitive to flooding, and colocalization of proteins and quantitative trait loci (QTLs) advances to narrow down the hub genes. To reveal soybean seedling tolerance to flooding, Qihuang34 (QH34), Jidou17(JD17), and their recombinant inbred lines were used in this study. Severe plant death, shorter root length, and more stress-induced proteins were observed in JD7 compared to QH34 under flooding. The major functional categories of proteins altered by flooding were similar in both cultivars, and formed a cohesive network. Protein abundance and gene expression of ribosomal protein S3 decreased in flooded JD17 compared to QH34. Through proteomics and QTL mapping, beta-glucosidase 44 and dehydrin were involved in flood tolerance. Beta-glucosidase 44 abundance, beta-glucosidase activity, and glucose content decreased in QH34 compared to JD17 during flooding. The dehydrin contained the <em>cis-</em>acting elements of methyl jasmonate (Me-JA) and gibberellin (GA), accompanied by increased levels of Me-JA and GA<sub>3</sub> in flooded QH34 and JD17, respectively. These findings suggest that integrating proteomics with QTL is advantageous to identify genes associated with flood tolerance, proposing that enhanced protein homeostasis and cell wall stiffening in root tips may confer soybean seedling tolerance to flooding via GA and JA signals.</p></div>\",\"PeriodicalId\":11758,\"journal\":{\"name\":\"Environmental and Experimental Botany\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental and Experimental Botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098847224002600\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098847224002600","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Protein homeostasis and cell wall remodeling in response to jasmonate and gibberellin signals improve flood tolerance in soybean (Glycine max L.)
The establishment of soybean seedlings is sensitive to flooding, and colocalization of proteins and quantitative trait loci (QTLs) advances to narrow down the hub genes. To reveal soybean seedling tolerance to flooding, Qihuang34 (QH34), Jidou17(JD17), and their recombinant inbred lines were used in this study. Severe plant death, shorter root length, and more stress-induced proteins were observed in JD7 compared to QH34 under flooding. The major functional categories of proteins altered by flooding were similar in both cultivars, and formed a cohesive network. Protein abundance and gene expression of ribosomal protein S3 decreased in flooded JD17 compared to QH34. Through proteomics and QTL mapping, beta-glucosidase 44 and dehydrin were involved in flood tolerance. Beta-glucosidase 44 abundance, beta-glucosidase activity, and glucose content decreased in QH34 compared to JD17 during flooding. The dehydrin contained the cis-acting elements of methyl jasmonate (Me-JA) and gibberellin (GA), accompanied by increased levels of Me-JA and GA3 in flooded QH34 and JD17, respectively. These findings suggest that integrating proteomics with QTL is advantageous to identify genes associated with flood tolerance, proposing that enhanced protein homeostasis and cell wall stiffening in root tips may confer soybean seedling tolerance to flooding via GA and JA signals.
期刊介绍:
Environmental and Experimental Botany (EEB) publishes research papers on the physical, chemical, biological, molecular mechanisms and processes involved in the responses of plants to their environment.
In addition to research papers, the journal includes review articles. Submission is in agreement with the Editors-in-Chief.
The Journal also publishes special issues which are built by invited guest editors and are related to the main themes of EEB.
The areas covered by the Journal include:
(1) Responses of plants to heavy metals and pollutants
(2) Plant/water interactions (salinity, drought, flooding)
(3) Responses of plants to radiations ranging from UV-B to infrared
(4) Plant/atmosphere relations (ozone, CO2 , temperature)
(5) Global change impacts on plant ecophysiology
(6) Biotic interactions involving environmental factors.