{"title":"人工智能辅助乳腺癌 HER2 免疫组化评估:系统回顾和荟萃分析","authors":"","doi":"10.1016/j.prp.2024.155472","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate assessment of HER2 expression in tumor tissue is crucial for determining HER2-targeted treatment options. Nevertheless, pathologists' assessments of HER2 status are less objective than automated, computer-based evaluations. Artificial Intelligence (AI) promises enhanced accuracy and reproducibility in HER2 interpretation. This study aimed to systematically evaluate current AI algorithms for HER2 immunohistochemical diagnosis, offering insights to guide the development of more adaptable algorithms in response to evolving HER2 assessment practices. A comprehensive data search of the PubMed, Embase, Cochrane, and Web of Science databases was conducted using a combination of subject terms and free text. A total of 4994 computational pathology articles published from inception to September 2023 identifying HER2 expression in breast cancer were retrieved. After applying predefined inclusion and exclusion criteria, seven studies were selected. These seven studies comprised 6867 HER2 identification tasks, with two studies employing the HER2-CONNECT algorithm, two using the CNN algorithm, one with the multi-class logistic regression algorithm, and two using the HER2 4B5 algorithm. AI's sensitivity and specificity for distinguishing HER2 0/1+ were 0.98 [0.92–0.99] and 0.92 [0.80–0.97] respectively. For distinguishing HER2 2+, the sensitivity and specificity were 0.78 [0.50–0.92] and 0.98 [0.93–0.99], respectively. For HER2 3+ distinction, AI exhibited a sensitivity of 0.99 [0.98–1.00] and specificity of 0.99 [0.97–1.00]. Furthermore, due to the lack of HER2-targeted therapies for HER2-negative patients in the past, pathologists may have neglected to distinguish between HER2 0 and 1+, leaving room for improvement in the performance of artificial intelligence (AI) in this differentiation. AI excels in automating the assessment of HER2 immunohistochemistry, showing promising results despite slight variations in performance across different HER2 status. While incorporating AI algorithms into the pathology workflow for HER2 assessment poses challenges in standardization, application patterns, and ethical considerations, ongoing advancements suggest its potential as a widely effective tool for pathologists in clinical practice in the near future.</p></div>","PeriodicalId":19916,"journal":{"name":"Pathology, research and practice","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence for assisted HER2 immunohistochemistry evaluation of breast cancer: A systematic review and meta-analysis\",\"authors\":\"\",\"doi\":\"10.1016/j.prp.2024.155472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Accurate assessment of HER2 expression in tumor tissue is crucial for determining HER2-targeted treatment options. Nevertheless, pathologists' assessments of HER2 status are less objective than automated, computer-based evaluations. Artificial Intelligence (AI) promises enhanced accuracy and reproducibility in HER2 interpretation. This study aimed to systematically evaluate current AI algorithms for HER2 immunohistochemical diagnosis, offering insights to guide the development of more adaptable algorithms in response to evolving HER2 assessment practices. A comprehensive data search of the PubMed, Embase, Cochrane, and Web of Science databases was conducted using a combination of subject terms and free text. A total of 4994 computational pathology articles published from inception to September 2023 identifying HER2 expression in breast cancer were retrieved. After applying predefined inclusion and exclusion criteria, seven studies were selected. These seven studies comprised 6867 HER2 identification tasks, with two studies employing the HER2-CONNECT algorithm, two using the CNN algorithm, one with the multi-class logistic regression algorithm, and two using the HER2 4B5 algorithm. AI's sensitivity and specificity for distinguishing HER2 0/1+ were 0.98 [0.92–0.99] and 0.92 [0.80–0.97] respectively. For distinguishing HER2 2+, the sensitivity and specificity were 0.78 [0.50–0.92] and 0.98 [0.93–0.99], respectively. For HER2 3+ distinction, AI exhibited a sensitivity of 0.99 [0.98–1.00] and specificity of 0.99 [0.97–1.00]. Furthermore, due to the lack of HER2-targeted therapies for HER2-negative patients in the past, pathologists may have neglected to distinguish between HER2 0 and 1+, leaving room for improvement in the performance of artificial intelligence (AI) in this differentiation. AI excels in automating the assessment of HER2 immunohistochemistry, showing promising results despite slight variations in performance across different HER2 status. While incorporating AI algorithms into the pathology workflow for HER2 assessment poses challenges in standardization, application patterns, and ethical considerations, ongoing advancements suggest its potential as a widely effective tool for pathologists in clinical practice in the near future.</p></div>\",\"PeriodicalId\":19916,\"journal\":{\"name\":\"Pathology, research and practice\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pathology, research and practice\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0344033824003832\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathology, research and practice","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0344033824003832","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PATHOLOGY","Score":null,"Total":0}
Artificial intelligence for assisted HER2 immunohistochemistry evaluation of breast cancer: A systematic review and meta-analysis
Accurate assessment of HER2 expression in tumor tissue is crucial for determining HER2-targeted treatment options. Nevertheless, pathologists' assessments of HER2 status are less objective than automated, computer-based evaluations. Artificial Intelligence (AI) promises enhanced accuracy and reproducibility in HER2 interpretation. This study aimed to systematically evaluate current AI algorithms for HER2 immunohistochemical diagnosis, offering insights to guide the development of more adaptable algorithms in response to evolving HER2 assessment practices. A comprehensive data search of the PubMed, Embase, Cochrane, and Web of Science databases was conducted using a combination of subject terms and free text. A total of 4994 computational pathology articles published from inception to September 2023 identifying HER2 expression in breast cancer were retrieved. After applying predefined inclusion and exclusion criteria, seven studies were selected. These seven studies comprised 6867 HER2 identification tasks, with two studies employing the HER2-CONNECT algorithm, two using the CNN algorithm, one with the multi-class logistic regression algorithm, and two using the HER2 4B5 algorithm. AI's sensitivity and specificity for distinguishing HER2 0/1+ were 0.98 [0.92–0.99] and 0.92 [0.80–0.97] respectively. For distinguishing HER2 2+, the sensitivity and specificity were 0.78 [0.50–0.92] and 0.98 [0.93–0.99], respectively. For HER2 3+ distinction, AI exhibited a sensitivity of 0.99 [0.98–1.00] and specificity of 0.99 [0.97–1.00]. Furthermore, due to the lack of HER2-targeted therapies for HER2-negative patients in the past, pathologists may have neglected to distinguish between HER2 0 and 1+, leaving room for improvement in the performance of artificial intelligence (AI) in this differentiation. AI excels in automating the assessment of HER2 immunohistochemistry, showing promising results despite slight variations in performance across different HER2 status. While incorporating AI algorithms into the pathology workflow for HER2 assessment poses challenges in standardization, application patterns, and ethical considerations, ongoing advancements suggest its potential as a widely effective tool for pathologists in clinical practice in the near future.
期刊介绍:
Pathology, Research and Practice provides accessible coverage of the most recent developments across the entire field of pathology: Reviews focus on recent progress in pathology, while Comments look at interesting current problems and at hypotheses for future developments in pathology. Original Papers present novel findings on all aspects of general, anatomic and molecular pathology. Rapid Communications inform readers on preliminary findings that may be relevant for further studies and need to be communicated quickly. Teaching Cases look at new aspects or special diagnostic problems of diseases and at case reports relevant for the pathologist''s practice.