离轴外部磁场扰动对垂直 STT-RAM 单元写入误差斜率的影响:微磁研究

IF 1.1 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Magnetics Letters Pub Date : 2024-07-18 DOI:10.1109/LMAG.2024.3430189
Susheel K. Arya;Sonalie Ahirwar;Tanmoy Pramanik
{"title":"离轴外部磁场扰动对垂直 STT-RAM 单元写入误差斜率的影响:微磁研究","authors":"Susheel K. Arya;Sonalie Ahirwar;Tanmoy Pramanik","doi":"10.1109/LMAG.2024.3430189","DOIUrl":null,"url":null,"abstract":"External magnetic field perturbation remains a key reliability issue for spin-transfer-torque magnetic random-access memory. Although several prototypes have been demonstrated already, the effects of external fields with varying directions are not well reported. Our macrospin-based study revealed a significant increase in write failures in the presence of small off-axis external magnetic fields. However, incoherent switching pathways, which are also known to impact the switching process, cannot be captured by a macrospin model. Here, we report the micromagnetic model study of the switching process of perpendicular nanomagnets in the presence of magnetic fields of varying magnitudes and directions. The results are consistent with the macrospin model prediction for smaller magnet sizes. For larger magnet sizes, the impact of the off-axis external magnetic field becomes much worse when incoherent magnetization modes dominate the switching process.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"15 ","pages":"1-5"},"PeriodicalIF":1.1000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Off-Axis External Magnetic Field Perturbation on the Write Error Slopes of Perpendicular STT-RAM Cell: Micromagnetic Study\",\"authors\":\"Susheel K. Arya;Sonalie Ahirwar;Tanmoy Pramanik\",\"doi\":\"10.1109/LMAG.2024.3430189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"External magnetic field perturbation remains a key reliability issue for spin-transfer-torque magnetic random-access memory. Although several prototypes have been demonstrated already, the effects of external fields with varying directions are not well reported. Our macrospin-based study revealed a significant increase in write failures in the presence of small off-axis external magnetic fields. However, incoherent switching pathways, which are also known to impact the switching process, cannot be captured by a macrospin model. Here, we report the micromagnetic model study of the switching process of perpendicular nanomagnets in the presence of magnetic fields of varying magnitudes and directions. The results are consistent with the macrospin model prediction for smaller magnet sizes. For larger magnet sizes, the impact of the off-axis external magnetic field becomes much worse when incoherent magnetization modes dominate the switching process.\",\"PeriodicalId\":13040,\"journal\":{\"name\":\"IEEE Magnetics Letters\",\"volume\":\"15 \",\"pages\":\"1-5\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Magnetics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10602740/\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Magnetics Letters","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10602740/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

外部磁场扰动仍然是自旋转移力矩磁随机存取存储器的一个关键可靠性问题。虽然已经展示了几个原型,但关于不同方向的外部磁场的影响还没有很好的报道。我们基于宏旋的研究表明,在小的离轴外场存在时,写入失败率会显著增加。然而,不连贯的开关路径也会影响开关过程,但宏旋模型却无法捕捉到这些影响。在此,我们报告了垂直纳米磁体在不同大小和方向的磁场下开关过程的微磁模型研究。对于较小尺寸的磁体,研究结果与宏旋模型的预测一致。对于较大尺寸的磁体,当不连贯磁化模式主导开关过程时,离轴外部磁场的影响会变得更加严重。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impact of Off-Axis External Magnetic Field Perturbation on the Write Error Slopes of Perpendicular STT-RAM Cell: Micromagnetic Study
External magnetic field perturbation remains a key reliability issue for spin-transfer-torque magnetic random-access memory. Although several prototypes have been demonstrated already, the effects of external fields with varying directions are not well reported. Our macrospin-based study revealed a significant increase in write failures in the presence of small off-axis external magnetic fields. However, incoherent switching pathways, which are also known to impact the switching process, cannot be captured by a macrospin model. Here, we report the micromagnetic model study of the switching process of perpendicular nanomagnets in the presence of magnetic fields of varying magnitudes and directions. The results are consistent with the macrospin model prediction for smaller magnet sizes. For larger magnet sizes, the impact of the off-axis external magnetic field becomes much worse when incoherent magnetization modes dominate the switching process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Magnetics Letters
IEEE Magnetics Letters PHYSICS, APPLIED-
CiteScore
2.40
自引率
0.00%
发文量
37
期刊介绍: IEEE Magnetics Letters is a peer-reviewed, archival journal covering the physics and engineering of magnetism, magnetic materials, applied magnetics, design and application of magnetic devices, bio-magnetics, magneto-electronics, and spin electronics. IEEE Magnetics Letters publishes short, scholarly articles of substantial current interest. IEEE Magnetics Letters is a hybrid Open Access (OA) journal. For a fee, authors have the option making their articles freely available to all, including non-subscribers. OA articles are identified as Open Access.
期刊最新文献
Enhancement of Magnon–Photon Coupling Strength: Effect of Spatial Distribution Controllable Damping Boring Tool Based on Magnetorheological Elastomer A New Differential Magnetic Probe With Out-of-Phase Balun and Differential Loops Exchange-Biased Multiring Planar Hall Magnetoresistive Sensors With Nanotesla Resolution in Nonshielded Environments Spintronic Neuron Using a Magnetic Tunnel Junction for Low-Power Neuromorphic Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1