Wei Chen, Yuan Liao, Rui Dai, Yuanlin Dong, Liya Huang
{"title":"利用图卷积神经网络和双重关注机制进行基于脑电图的情绪识别","authors":"Wei Chen, Yuan Liao, Rui Dai, Yuanlin Dong, Liya Huang","doi":"10.3389/fncom.2024.1416494","DOIUrl":null,"url":null,"abstract":"EEG-based emotion recognition is becoming crucial in brain-computer interfaces (BCI). Currently, most researches focus on improving accuracy, while neglecting further research on the interpretability of models, we are committed to analyzing the impact of different brain regions and signal frequency bands on emotion generation based on graph structure. Therefore, this paper proposes a method named Dual Attention Mechanism Graph Convolutional Neural Network (DAMGCN). Specifically, we utilize graph convolutional neural networks to model the brain network as a graph to extract representative spatial features. Furthermore, we employ the self-attention mechanism of the Transformer model which allocates more electrode channel weights and signal frequency band weights to important brain regions and frequency bands. The visualization of attention mechanism clearly demonstrates the weight allocation learned by DAMGCN. During the performance evaluation of our model on the DEAP, SEED, and SEED-IV datasets, we achieved the best results on the SEED dataset, showing subject-dependent experiments’ accuracy of 99.42% and subject-independent experiments’ accuracy of 73.21%. The results are demonstrably superior to the accuracies of most existing models in the realm of EEG-based emotion recognition.","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"40 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EEG-based emotion recognition using graph convolutional neural network with dual attention mechanism\",\"authors\":\"Wei Chen, Yuan Liao, Rui Dai, Yuanlin Dong, Liya Huang\",\"doi\":\"10.3389/fncom.2024.1416494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"EEG-based emotion recognition is becoming crucial in brain-computer interfaces (BCI). Currently, most researches focus on improving accuracy, while neglecting further research on the interpretability of models, we are committed to analyzing the impact of different brain regions and signal frequency bands on emotion generation based on graph structure. Therefore, this paper proposes a method named Dual Attention Mechanism Graph Convolutional Neural Network (DAMGCN). Specifically, we utilize graph convolutional neural networks to model the brain network as a graph to extract representative spatial features. Furthermore, we employ the self-attention mechanism of the Transformer model which allocates more electrode channel weights and signal frequency band weights to important brain regions and frequency bands. The visualization of attention mechanism clearly demonstrates the weight allocation learned by DAMGCN. During the performance evaluation of our model on the DEAP, SEED, and SEED-IV datasets, we achieved the best results on the SEED dataset, showing subject-dependent experiments’ accuracy of 99.42% and subject-independent experiments’ accuracy of 73.21%. The results are demonstrably superior to the accuracies of most existing models in the realm of EEG-based emotion recognition.\",\"PeriodicalId\":12363,\"journal\":{\"name\":\"Frontiers in Computational Neuroscience\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Computational Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fncom.2024.1416494\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncom.2024.1416494","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
EEG-based emotion recognition using graph convolutional neural network with dual attention mechanism
EEG-based emotion recognition is becoming crucial in brain-computer interfaces (BCI). Currently, most researches focus on improving accuracy, while neglecting further research on the interpretability of models, we are committed to analyzing the impact of different brain regions and signal frequency bands on emotion generation based on graph structure. Therefore, this paper proposes a method named Dual Attention Mechanism Graph Convolutional Neural Network (DAMGCN). Specifically, we utilize graph convolutional neural networks to model the brain network as a graph to extract representative spatial features. Furthermore, we employ the self-attention mechanism of the Transformer model which allocates more electrode channel weights and signal frequency band weights to important brain regions and frequency bands. The visualization of attention mechanism clearly demonstrates the weight allocation learned by DAMGCN. During the performance evaluation of our model on the DEAP, SEED, and SEED-IV datasets, we achieved the best results on the SEED dataset, showing subject-dependent experiments’ accuracy of 99.42% and subject-independent experiments’ accuracy of 73.21%. The results are demonstrably superior to the accuracies of most existing models in the realm of EEG-based emotion recognition.
期刊介绍:
Frontiers in Computational Neuroscience is a first-tier electronic journal devoted to promoting theoretical modeling of brain function and fostering interdisciplinary interactions between theoretical and experimental neuroscience. Progress in understanding the amazing capabilities of the brain is still limited, and we believe that it will only come with deep theoretical thinking and mutually stimulating cooperation between different disciplines and approaches. We therefore invite original contributions on a wide range of topics that present the fruits of such cooperation, or provide stimuli for future alliances. We aim to provide an interactive forum for cutting-edge theoretical studies of the nervous system, and for promulgating the best theoretical research to the broader neuroscience community. Models of all styles and at all levels are welcome, from biophysically motivated realistic simulations of neurons and synapses to high-level abstract models of inference and decision making. While the journal is primarily focused on theoretically based and driven research, we welcome experimental studies that validate and test theoretical conclusions.
Also: comp neuro