温带二叠纪湖泊中小型原生生物和自由生活细菌群落的时空变化:代谢标码和机器学习的启示。

IF 3.5 3区 生物学 Q2 MICROBIOLOGY FEMS microbiology ecology Pub Date : 2024-07-12 DOI:10.1093/femsec/fiae104
Michał Karlicki, Anna Bednarska, Paweł Hałakuc, Kacper Maciszewski, Anna Karnkowska
{"title":"温带二叠纪湖泊中小型原生生物和自由生活细菌群落的时空变化:代谢标码和机器学习的启示。","authors":"Michał Karlicki, Anna Bednarska, Paweł Hałakuc, Kacper Maciszewski, Anna Karnkowska","doi":"10.1093/femsec/fiae104","DOIUrl":null,"url":null,"abstract":"<p><p>Microbial communities, which include prokaryotes and protists, play an important role in aquatic ecosystems and influence ecological processes. To understand these communities, metabarcoding provides a powerful tool to assess their taxonomic composition and track spatio-temporal dynamics in both marine and freshwater environments. While marine ecosystems have been extensively studied, there is a notable research gap in understanding eukaryotic microbial communities in temperate lakes. Our study addresses this gap by investigating the free-living bacteria and small protist communities in Lake Roś (Poland), a dimictic temperate lake. Metabarcoding analysis revealed that both the bacterial and protist communities exhibit distinct seasonal patterns that are not necessarily shaped by dominant taxa. Furthermore, machine learning and statistical methods identified crucial amplicon sequence variants (ASVs) specific to each season. In addition, we identified a distinct community in the anoxic hypolimnion. We have also shown that the key factors shaping the composition of analysed community are temperature, oxygen, and silicon concentration. Understanding these community structures and the underlying factors is important in the context of climate change potentially impacting mixing patterns and leading to prolonged stratification.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11302952/pdf/","citationCount":"0","resultStr":"{\"title\":\"Spatio-temporal changes of small protist and free-living bacterial communities in a temperate dimictic lake: insights from metabarcoding and machine learning.\",\"authors\":\"Michał Karlicki, Anna Bednarska, Paweł Hałakuc, Kacper Maciszewski, Anna Karnkowska\",\"doi\":\"10.1093/femsec/fiae104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microbial communities, which include prokaryotes and protists, play an important role in aquatic ecosystems and influence ecological processes. To understand these communities, metabarcoding provides a powerful tool to assess their taxonomic composition and track spatio-temporal dynamics in both marine and freshwater environments. While marine ecosystems have been extensively studied, there is a notable research gap in understanding eukaryotic microbial communities in temperate lakes. Our study addresses this gap by investigating the free-living bacteria and small protist communities in Lake Roś (Poland), a dimictic temperate lake. Metabarcoding analysis revealed that both the bacterial and protist communities exhibit distinct seasonal patterns that are not necessarily shaped by dominant taxa. Furthermore, machine learning and statistical methods identified crucial amplicon sequence variants (ASVs) specific to each season. In addition, we identified a distinct community in the anoxic hypolimnion. We have also shown that the key factors shaping the composition of analysed community are temperature, oxygen, and silicon concentration. Understanding these community structures and the underlying factors is important in the context of climate change potentially impacting mixing patterns and leading to prolonged stratification.</p>\",\"PeriodicalId\":12312,\"journal\":{\"name\":\"FEMS microbiology ecology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11302952/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEMS microbiology ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/femsec/fiae104\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsec/fiae104","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

包括原核生物和原生生物在内的微生物群落在水生生态系统中发挥着重要作用,并影响着生态过程。为了了解这些群落,代谢标码提供了一种强大的工具来评估它们的分类组成,并跟踪海洋和淡水环境中的时空动态。虽然对海洋生态系统进行了广泛的研究,但在了解温带湖泊中的真核微生物群落方面还存在明显的研究空白。我们的研究通过调查罗兹湖(波兰)这一二纬温带湖泊中的自由生活细菌和小型原生生物群落,填补了这一空白。元条码分析表明,细菌和原生生物群落都表现出独特的季节性模式,这些模式并不一定是由优势类群形成的。此外,机器学习和统计方法还发现了每个季节特有的关键扩增子序列变异(ASV)。此外,我们还在缺氧的下盐层中发现了一个独特的群落。我们还发现,影响所分析群落组成的关键因素是温度、氧气和硅浓度。在气候变化可能影响混合模式并导致长期分层的背景下,了解这些群落结构及其背后的因素非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spatio-temporal changes of small protist and free-living bacterial communities in a temperate dimictic lake: insights from metabarcoding and machine learning.

Microbial communities, which include prokaryotes and protists, play an important role in aquatic ecosystems and influence ecological processes. To understand these communities, metabarcoding provides a powerful tool to assess their taxonomic composition and track spatio-temporal dynamics in both marine and freshwater environments. While marine ecosystems have been extensively studied, there is a notable research gap in understanding eukaryotic microbial communities in temperate lakes. Our study addresses this gap by investigating the free-living bacteria and small protist communities in Lake Roś (Poland), a dimictic temperate lake. Metabarcoding analysis revealed that both the bacterial and protist communities exhibit distinct seasonal patterns that are not necessarily shaped by dominant taxa. Furthermore, machine learning and statistical methods identified crucial amplicon sequence variants (ASVs) specific to each season. In addition, we identified a distinct community in the anoxic hypolimnion. We have also shown that the key factors shaping the composition of analysed community are temperature, oxygen, and silicon concentration. Understanding these community structures and the underlying factors is important in the context of climate change potentially impacting mixing patterns and leading to prolonged stratification.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
FEMS microbiology ecology
FEMS microbiology ecology 生物-微生物学
CiteScore
7.50
自引率
2.40%
发文量
132
审稿时长
3 months
期刊介绍: FEMS Microbiology Ecology aims to ensure efficient publication of high-quality papers that are original and provide a significant contribution to the understanding of microbial ecology. The journal contains Research Articles and MiniReviews on fundamental aspects of the ecology of microorganisms in natural soil, aquatic and atmospheric habitats, including extreme environments, and in artificial or managed environments. Research papers on pure cultures and in the areas of plant pathology and medical, food or veterinary microbiology will be published where they provide valuable generic information on microbial ecology. Papers can deal with culturable and non-culturable forms of any type of microorganism: bacteria, archaea, filamentous fungi, yeasts, protozoa, cyanobacteria, algae or viruses. In addition, the journal will publish Perspectives, Current Opinion and Controversy Articles, Commentaries and Letters to the Editor on topical issues in microbial ecology. - Application of ecological theory to microbial ecology - Interactions and signalling between microorganisms and with plants and animals - Interactions between microorganisms and their physicochemical enviornment - Microbial aspects of biogeochemical cycles and processes - Microbial community ecology - Phylogenetic and functional diversity of microbial communities - Evolutionary biology of microorganisms
期刊最新文献
Sea urchin intestinal bacterial communities depend on seaweed diet and contain nitrogen-fixing symbionts. Oral amoxicillin treatment disrupts the gut microbiome and metabolome without interfering with luminal redox potential in the intestine of Wistar Han rats. Spinach Seed Microbiome Characteristics Linked to Suppressiveness Against Globisporangium ultimum Damping-Off. Experimental evidence on the impact of climate-induced hydrological and thermal variations on glacier-fed stream biofilms. Extensive environmental survey of free-living amoebae and their elusive association with Mycobacterium bovis or Mycobacterium avium subsp. paratuberculosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1