Reinhard Heckel, Mathews Jacob, Akshay Chaudhari, Or Perlman, Efrat Shimron
{"title":"用于加速和稳健磁共振成像重建的深度学习。","authors":"Reinhard Heckel, Mathews Jacob, Akshay Chaudhari, Or Perlman, Efrat Shimron","doi":"10.1007/s10334-024-01173-8","DOIUrl":null,"url":null,"abstract":"<p><p>Deep learning (DL) has recently emerged as a pivotal technology for enhancing magnetic resonance imaging (MRI), a critical tool in diagnostic radiology. This review paper provides a comprehensive overview of recent advances in DL for MRI reconstruction, and focuses on various DL approaches and architectures designed to improve image quality, accelerate scans, and address data-related challenges. It explores end-to-end neural networks, pre-trained and generative models, and self-supervised methods, and highlights their contributions to overcoming traditional MRI limitations. It also discusses the role of DL in optimizing acquisition protocols, enhancing robustness against distribution shifts, and tackling biases. Drawing on the extensive literature and practical insights, it outlines current successes, limitations, and future directions for leveraging DL in MRI reconstruction, while emphasizing the potential of DL to significantly impact clinical imaging practices.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":"335-368"},"PeriodicalIF":2.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11316714/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deep learning for accelerated and robust MRI reconstruction.\",\"authors\":\"Reinhard Heckel, Mathews Jacob, Akshay Chaudhari, Or Perlman, Efrat Shimron\",\"doi\":\"10.1007/s10334-024-01173-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Deep learning (DL) has recently emerged as a pivotal technology for enhancing magnetic resonance imaging (MRI), a critical tool in diagnostic radiology. This review paper provides a comprehensive overview of recent advances in DL for MRI reconstruction, and focuses on various DL approaches and architectures designed to improve image quality, accelerate scans, and address data-related challenges. It explores end-to-end neural networks, pre-trained and generative models, and self-supervised methods, and highlights their contributions to overcoming traditional MRI limitations. It also discusses the role of DL in optimizing acquisition protocols, enhancing robustness against distribution shifts, and tackling biases. Drawing on the extensive literature and practical insights, it outlines current successes, limitations, and future directions for leveraging DL in MRI reconstruction, while emphasizing the potential of DL to significantly impact clinical imaging practices.</p>\",\"PeriodicalId\":18067,\"journal\":{\"name\":\"Magnetic Resonance Materials in Physics, Biology and Medicine\",\"volume\":\" \",\"pages\":\"335-368\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11316714/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic Resonance Materials in Physics, Biology and Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10334-024-01173-8\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance Materials in Physics, Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10334-024-01173-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Deep learning for accelerated and robust MRI reconstruction.
Deep learning (DL) has recently emerged as a pivotal technology for enhancing magnetic resonance imaging (MRI), a critical tool in diagnostic radiology. This review paper provides a comprehensive overview of recent advances in DL for MRI reconstruction, and focuses on various DL approaches and architectures designed to improve image quality, accelerate scans, and address data-related challenges. It explores end-to-end neural networks, pre-trained and generative models, and self-supervised methods, and highlights their contributions to overcoming traditional MRI limitations. It also discusses the role of DL in optimizing acquisition protocols, enhancing robustness against distribution shifts, and tackling biases. Drawing on the extensive literature and practical insights, it outlines current successes, limitations, and future directions for leveraging DL in MRI reconstruction, while emphasizing the potential of DL to significantly impact clinical imaging practices.
期刊介绍:
MAGMA is a multidisciplinary international journal devoted to the publication of articles on all aspects of magnetic resonance techniques and their applications in medicine and biology. MAGMA currently publishes research papers, reviews, letters to the editor, and commentaries, six times a year. The subject areas covered by MAGMA include:
advances in materials, hardware and software in magnetic resonance technology,
new developments and results in research and practical applications of magnetic resonance imaging and spectroscopy related to biology and medicine,
study of animal models and intact cells using magnetic resonance,
reports of clinical trials on humans and clinical validation of magnetic resonance protocols.