Fernanda Barzallo, Maria Baldeon-Calisto, Margorie Pérez, Maria Emilia Moscoso, Danny Navarrete, Daniel Riofrío, Pablo Medina-Peréz, Susana K Lai-Yuen, Diego Benítez, Noel Peréz, Ricardo Flores Moyano, Mateo Fierro
{"title":"利用跨语境训练进行宣言分类的转换器模型:厄瓜多尔案例研究","authors":"Fernanda Barzallo, Maria Baldeon-Calisto, Margorie Pérez, Maria Emilia Moscoso, Danny Navarrete, Daniel Riofrío, Pablo Medina-Peréz, Susana K Lai-Yuen, Diego Benítez, Noel Peréz, Ricardo Flores Moyano, Mateo Fierro","doi":"10.1177/08944393241266220","DOIUrl":null,"url":null,"abstract":"Content analysis of political manifestos is necessary to understand the policies and proposed actions of a party. However, manually labeling political texts is time-consuming and labor-intensive. Transformer networks have become essential tools for automating this task. Nevertheless, these models require extensive datasets to achieve good performance. This can be a limitation in manifesto classification, where the availability of publicly labeled datasets can be scarce. To address this challenge, in this work, we developed a Transformer network for the classification of manifestos using a cross-domain training strategy. Using the database of the Comparative Manifesto Project, we implemented a fractional factorial experimental design to determine which Spanish-written manifestos form the best training set for Ecuadorian manifesto labeling. Furthermore, we statistically analyzed which Transformer architecture and preprocessing operations improve the model accuracy. The results indicate that creating a training set with manifestos from Spain and Uruguay, along with implementing stemming and lemmatization preprocessing operations, produces the highest classification accuracy. In addition, we found that the DistilBERT and RoBERTa transformer networks perform statistically similarly and consistently well in manifesto classification. Using the cross-context training strategy, DistilBERT and RoBERTa achieve 60.05% and 57.64% accuracy, respectively, in the classification of the Ecuadorian manifesto. Finally, we investigated the effect of the composition of the training set on performance. The experiments demonstrate that training DistilBERT solely with Ecuadorian manifestos achieves the highest accuracy and F1-score. Furthermore, in the absence of the Ecuadorian dataset, competitive performance is achieved by training the model with datasets from Spain and Uruguay.","PeriodicalId":49509,"journal":{"name":"Social Science Computer Review","volume":"53 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Transformer Model for Manifesto Classification Using Cross-Context Training: An Ecuadorian Case Study\",\"authors\":\"Fernanda Barzallo, Maria Baldeon-Calisto, Margorie Pérez, Maria Emilia Moscoso, Danny Navarrete, Daniel Riofrío, Pablo Medina-Peréz, Susana K Lai-Yuen, Diego Benítez, Noel Peréz, Ricardo Flores Moyano, Mateo Fierro\",\"doi\":\"10.1177/08944393241266220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Content analysis of political manifestos is necessary to understand the policies and proposed actions of a party. However, manually labeling political texts is time-consuming and labor-intensive. Transformer networks have become essential tools for automating this task. Nevertheless, these models require extensive datasets to achieve good performance. This can be a limitation in manifesto classification, where the availability of publicly labeled datasets can be scarce. To address this challenge, in this work, we developed a Transformer network for the classification of manifestos using a cross-domain training strategy. Using the database of the Comparative Manifesto Project, we implemented a fractional factorial experimental design to determine which Spanish-written manifestos form the best training set for Ecuadorian manifesto labeling. Furthermore, we statistically analyzed which Transformer architecture and preprocessing operations improve the model accuracy. The results indicate that creating a training set with manifestos from Spain and Uruguay, along with implementing stemming and lemmatization preprocessing operations, produces the highest classification accuracy. In addition, we found that the DistilBERT and RoBERTa transformer networks perform statistically similarly and consistently well in manifesto classification. Using the cross-context training strategy, DistilBERT and RoBERTa achieve 60.05% and 57.64% accuracy, respectively, in the classification of the Ecuadorian manifesto. Finally, we investigated the effect of the composition of the training set on performance. The experiments demonstrate that training DistilBERT solely with Ecuadorian manifestos achieves the highest accuracy and F1-score. Furthermore, in the absence of the Ecuadorian dataset, competitive performance is achieved by training the model with datasets from Spain and Uruguay.\",\"PeriodicalId\":49509,\"journal\":{\"name\":\"Social Science Computer Review\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Social Science Computer Review\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.1177/08944393241266220\",\"RegionNum\":2,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Social Science Computer Review","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1177/08944393241266220","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
摘要
要了解一个政党的政策和拟议行动,就必须对政治宣言进行内容分析。然而,手动标注政治文本既耗时又耗力。变压器网络已成为实现这一任务自动化的重要工具。然而,这些模型需要大量的数据集才能实现良好的性能。这在宣言分类中可能是一个限制,因为公开标注的数据集可能很少。为了应对这一挑战,在这项工作中,我们采用跨领域训练策略,开发了一种用于宣言分类的 Transformer 网络。利用比较宣言项目的数据库,我们实施了一个分数因子实验设计,以确定哪些西班牙文撰写的宣言是厄瓜多尔宣言标注的最佳训练集。此外,我们还统计分析了哪些 Transformer 架构和预处理操作可以提高模型的准确性。结果表明,创建一个包含西班牙和乌拉圭宣言的训练集,并实施词干化和词素化预处理操作,能产生最高的分类准确率。此外,我们还发现 DistilBERT 和 RoBERTa 变换器网络在宣言分类方面的表现在统计上相似且一致良好。使用跨语境训练策略,DistilBERT 和 RoBERTa 在厄瓜多尔宣言的分类中分别达到了 60.05% 和 57.64% 的准确率。最后,我们研究了训练集的组成对性能的影响。实验表明,仅使用厄瓜多尔宣言对 DistilBERT 进行训练可获得最高的准确率和 F1 分数。此外,在没有厄瓜多尔数据集的情况下,使用西班牙和乌拉圭的数据集对该模型进行训练,也能获得具有竞争力的性能。
A Transformer Model for Manifesto Classification Using Cross-Context Training: An Ecuadorian Case Study
Content analysis of political manifestos is necessary to understand the policies and proposed actions of a party. However, manually labeling political texts is time-consuming and labor-intensive. Transformer networks have become essential tools for automating this task. Nevertheless, these models require extensive datasets to achieve good performance. This can be a limitation in manifesto classification, where the availability of publicly labeled datasets can be scarce. To address this challenge, in this work, we developed a Transformer network for the classification of manifestos using a cross-domain training strategy. Using the database of the Comparative Manifesto Project, we implemented a fractional factorial experimental design to determine which Spanish-written manifestos form the best training set for Ecuadorian manifesto labeling. Furthermore, we statistically analyzed which Transformer architecture and preprocessing operations improve the model accuracy. The results indicate that creating a training set with manifestos from Spain and Uruguay, along with implementing stemming and lemmatization preprocessing operations, produces the highest classification accuracy. In addition, we found that the DistilBERT and RoBERTa transformer networks perform statistically similarly and consistently well in manifesto classification. Using the cross-context training strategy, DistilBERT and RoBERTa achieve 60.05% and 57.64% accuracy, respectively, in the classification of the Ecuadorian manifesto. Finally, we investigated the effect of the composition of the training set on performance. The experiments demonstrate that training DistilBERT solely with Ecuadorian manifestos achieves the highest accuracy and F1-score. Furthermore, in the absence of the Ecuadorian dataset, competitive performance is achieved by training the model with datasets from Spain and Uruguay.
期刊介绍:
Unique Scope Social Science Computer Review is an interdisciplinary journal covering social science instructional and research applications of computing, as well as societal impacts of informational technology. Topics included: artificial intelligence, business, computational social science theory, computer-assisted survey research, computer-based qualitative analysis, computer simulation, economic modeling, electronic modeling, electronic publishing, geographic information systems, instrumentation and research tools, public administration, social impacts of computing and telecommunications, software evaluation, world-wide web resources for social scientists. Interdisciplinary Nature Because the Uses and impacts of computing are interdisciplinary, so is Social Science Computer Review. The journal is of direct relevance to scholars and scientists in a wide variety of disciplines. In its pages you''ll find work in the following areas: sociology, anthropology, political science, economics, psychology, computer literacy, computer applications, and methodology.