Sepehr Zamani, Nariman Rezaei Kolarijani, Mahdi Naeiji, Ahmad Vaez, Hasan Maghsoodifar, Seyed Amir Hossein Sadeghi Douki, Majid Salehi
{"title":"开发负载 Omega-3 的羧甲基纤维素/明胶水凝胶,用于皮肤再生。","authors":"Sepehr Zamani, Nariman Rezaei Kolarijani, Mahdi Naeiji, Ahmad Vaez, Hasan Maghsoodifar, Seyed Amir Hossein Sadeghi Douki, Majid Salehi","doi":"10.1177/08853282241265769","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrogels have several characteristics, including biocompatibility, physical similarity with the skin's extracellular matrix, and regeneration capacity. Cell migration and proliferation are facilitated by natural polymers such as gelatin (Gel) and carboxymethyl cellulose (CMC). Gelatin dressing acts as a structural framework for cell migration into the wound area, stimulating cell division and promoting granulation tissue formation. Omega-3 fatty acids from fish oil may prevent wound infection and improve the healing of wounds in the early stages. We studied the preparation of wound dressing containing Omega-3 and its ability to heal wounds. In this study, CMC-Gel hydrogels containing different concentrations of Omega-3 were investigated in full-thickness wounds. After the fabrication of the hydrogels by using surfactant (tween 20) and microemulsion method (oil in water), various tests such as SEM, Water uptake evaluation, weight loss, cell viability, blood compatibility, and in vivo study in rat cutaneous modeling during 14 days were performed to evaluate the properties of the fabricated hydrogels. The analysis of the hydrogels revealed that they possess porous structures with interconnected pores, with an average size of 83.23 ± 6.43 μm. The hydrogels exhibited a swelling capacity of up to 60% of their initial weight within 24 h, as indicated by the weight loss and swelling measurements. Cell viability study with the MTT technique showed that no cytotoxicity was observed at the recommended dosage, however, increasing the amount of omega-3 caused hemolysis, cell death, and inhibition of coagulation activity. An in vivo study in adult male rats with a full-thickness model showed greater than 91% improvement of the primary wound region after 2 weeks of treatment. Histological analysis demonstrated Omega-3 in hydrogels, which is a promising approach for topical skin treatment to prevent scar, and has shown efficacy as wound dressing by improving the repair process at the defect site.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"377-395"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of carboxymethyl cellulose/gelatin hydrogel loaded with Omega-3 for skin regeneration.\",\"authors\":\"Sepehr Zamani, Nariman Rezaei Kolarijani, Mahdi Naeiji, Ahmad Vaez, Hasan Maghsoodifar, Seyed Amir Hossein Sadeghi Douki, Majid Salehi\",\"doi\":\"10.1177/08853282241265769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hydrogels have several characteristics, including biocompatibility, physical similarity with the skin's extracellular matrix, and regeneration capacity. Cell migration and proliferation are facilitated by natural polymers such as gelatin (Gel) and carboxymethyl cellulose (CMC). Gelatin dressing acts as a structural framework for cell migration into the wound area, stimulating cell division and promoting granulation tissue formation. Omega-3 fatty acids from fish oil may prevent wound infection and improve the healing of wounds in the early stages. We studied the preparation of wound dressing containing Omega-3 and its ability to heal wounds. In this study, CMC-Gel hydrogels containing different concentrations of Omega-3 were investigated in full-thickness wounds. After the fabrication of the hydrogels by using surfactant (tween 20) and microemulsion method (oil in water), various tests such as SEM, Water uptake evaluation, weight loss, cell viability, blood compatibility, and in vivo study in rat cutaneous modeling during 14 days were performed to evaluate the properties of the fabricated hydrogels. The analysis of the hydrogels revealed that they possess porous structures with interconnected pores, with an average size of 83.23 ± 6.43 μm. The hydrogels exhibited a swelling capacity of up to 60% of their initial weight within 24 h, as indicated by the weight loss and swelling measurements. Cell viability study with the MTT technique showed that no cytotoxicity was observed at the recommended dosage, however, increasing the amount of omega-3 caused hemolysis, cell death, and inhibition of coagulation activity. An in vivo study in adult male rats with a full-thickness model showed greater than 91% improvement of the primary wound region after 2 weeks of treatment. Histological analysis demonstrated Omega-3 in hydrogels, which is a promising approach for topical skin treatment to prevent scar, and has shown efficacy as wound dressing by improving the repair process at the defect site.</p>\",\"PeriodicalId\":15138,\"journal\":{\"name\":\"Journal of Biomaterials Applications\",\"volume\":\" \",\"pages\":\"377-395\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomaterials Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/08853282241265769\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282241265769","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Development of carboxymethyl cellulose/gelatin hydrogel loaded with Omega-3 for skin regeneration.
Hydrogels have several characteristics, including biocompatibility, physical similarity with the skin's extracellular matrix, and regeneration capacity. Cell migration and proliferation are facilitated by natural polymers such as gelatin (Gel) and carboxymethyl cellulose (CMC). Gelatin dressing acts as a structural framework for cell migration into the wound area, stimulating cell division and promoting granulation tissue formation. Omega-3 fatty acids from fish oil may prevent wound infection and improve the healing of wounds in the early stages. We studied the preparation of wound dressing containing Omega-3 and its ability to heal wounds. In this study, CMC-Gel hydrogels containing different concentrations of Omega-3 were investigated in full-thickness wounds. After the fabrication of the hydrogels by using surfactant (tween 20) and microemulsion method (oil in water), various tests such as SEM, Water uptake evaluation, weight loss, cell viability, blood compatibility, and in vivo study in rat cutaneous modeling during 14 days were performed to evaluate the properties of the fabricated hydrogels. The analysis of the hydrogels revealed that they possess porous structures with interconnected pores, with an average size of 83.23 ± 6.43 μm. The hydrogels exhibited a swelling capacity of up to 60% of their initial weight within 24 h, as indicated by the weight loss and swelling measurements. Cell viability study with the MTT technique showed that no cytotoxicity was observed at the recommended dosage, however, increasing the amount of omega-3 caused hemolysis, cell death, and inhibition of coagulation activity. An in vivo study in adult male rats with a full-thickness model showed greater than 91% improvement of the primary wound region after 2 weeks of treatment. Histological analysis demonstrated Omega-3 in hydrogels, which is a promising approach for topical skin treatment to prevent scar, and has shown efficacy as wound dressing by improving the repair process at the defect site.
期刊介绍:
The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials.
Peer-reviewed articles by biomedical specialists from around the world cover:
New developments in biomaterials, R&D, properties and performance, evaluation and applications
Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices
Current findings in biological compatibility/incompatibility of biomaterials
The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use.
The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.