掺杂铜离子的多功能水凝胶具有温和的光热增强功能,可促进血管化骨再生。

IF 2.3 4区 医学 Q3 ENGINEERING, BIOMEDICAL Journal of Biomaterials Applications Pub Date : 2024-10-01 Epub Date: 2024-07-26 DOI:10.1177/08853282241268683
Chao Han, Dingsong Lu, Suoping Yang, Chong Liu, Feng Guo, Kai Zhang, Peng Li
{"title":"掺杂铜离子的多功能水凝胶具有温和的光热增强功能,可促进血管化骨再生。","authors":"Chao Han, Dingsong Lu, Suoping Yang, Chong Liu, Feng Guo, Kai Zhang, Peng Li","doi":"10.1177/08853282241268683","DOIUrl":null,"url":null,"abstract":"<p><p>The design and construction of a new and excellent synthetic graft is of great significance in the field of bone defect repair and reconstruction. In this study, a dopamine modified chitosan hydrogel doped with Cu ions with a mild photothermal effect was designed to provide a better microenvironment to advance the bone repair via promote the angiogenesis and osteogenesis. Characterizations showed the successful synthesis of the material while it also presented excellent biocompatibility and mild photothermal effect under the irradiation of near-infrared light. Further, it could enhance the angiogenesis of HUVECs cells through promoting the ability of migration and tube formation and enhance the osteogenic differentiation of MC3T3-E1 cells via increasing the content of vital osteogenic factors including Runx2, Col-1, OPN, OCN, OSX, etc. The in vivo experiment also testified that it could promote the bone defect repair in rat models. These results indicate the multifunctional hydrogel is an ideal material for the treatment of bone defects and has good clinical application potential.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"332-342"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Copper ion-doped multifunctional hydrogel with mild photothermal enhancement promotes vascularized bone regeneration.\",\"authors\":\"Chao Han, Dingsong Lu, Suoping Yang, Chong Liu, Feng Guo, Kai Zhang, Peng Li\",\"doi\":\"10.1177/08853282241268683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The design and construction of a new and excellent synthetic graft is of great significance in the field of bone defect repair and reconstruction. In this study, a dopamine modified chitosan hydrogel doped with Cu ions with a mild photothermal effect was designed to provide a better microenvironment to advance the bone repair via promote the angiogenesis and osteogenesis. Characterizations showed the successful synthesis of the material while it also presented excellent biocompatibility and mild photothermal effect under the irradiation of near-infrared light. Further, it could enhance the angiogenesis of HUVECs cells through promoting the ability of migration and tube formation and enhance the osteogenic differentiation of MC3T3-E1 cells via increasing the content of vital osteogenic factors including Runx2, Col-1, OPN, OCN, OSX, etc. The in vivo experiment also testified that it could promote the bone defect repair in rat models. These results indicate the multifunctional hydrogel is an ideal material for the treatment of bone defects and has good clinical application potential.</p>\",\"PeriodicalId\":15138,\"journal\":{\"name\":\"Journal of Biomaterials Applications\",\"volume\":\" \",\"pages\":\"332-342\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomaterials Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/08853282241268683\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282241268683","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

在骨缺损修复和重建领域,设计和构建一种新型、优良的合成移植物具有重要意义。本研究设计了一种掺杂铜离子的多巴胺修饰壳聚糖水凝胶,具有温和的光热效应,可通过促进血管生成和骨生成为骨修复提供更好的微环境。表征结果表明,该材料的合成非常成功,而且具有良好的生物相容性,在近红外线照射下具有温和的光热效应。此外,它还能通过促进迁移和管形成能力来增强 HUVECs 细胞的血管生成,并通过增加 Runx2、Col-1、OPN、OCN、OSX 等重要成骨因子的含量来增强 MC3T3-E1 细胞的成骨分化。体内实验也证明,它能促进大鼠模型的骨缺损修复。这些结果表明,多功能水凝胶是治疗骨缺损的理想材料,具有良好的临床应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Copper ion-doped multifunctional hydrogel with mild photothermal enhancement promotes vascularized bone regeneration.

The design and construction of a new and excellent synthetic graft is of great significance in the field of bone defect repair and reconstruction. In this study, a dopamine modified chitosan hydrogel doped with Cu ions with a mild photothermal effect was designed to provide a better microenvironment to advance the bone repair via promote the angiogenesis and osteogenesis. Characterizations showed the successful synthesis of the material while it also presented excellent biocompatibility and mild photothermal effect under the irradiation of near-infrared light. Further, it could enhance the angiogenesis of HUVECs cells through promoting the ability of migration and tube formation and enhance the osteogenic differentiation of MC3T3-E1 cells via increasing the content of vital osteogenic factors including Runx2, Col-1, OPN, OCN, OSX, etc. The in vivo experiment also testified that it could promote the bone defect repair in rat models. These results indicate the multifunctional hydrogel is an ideal material for the treatment of bone defects and has good clinical application potential.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomaterials Applications
Journal of Biomaterials Applications 工程技术-材料科学:生物材料
CiteScore
5.10
自引率
3.40%
发文量
144
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials. Peer-reviewed articles by biomedical specialists from around the world cover: New developments in biomaterials, R&D, properties and performance, evaluation and applications Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices Current findings in biological compatibility/incompatibility of biomaterials The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use. The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.
期刊最新文献
Comprehensive review of 3D printing techniques emphasizing thermal characterization in biomedical prototyping. Multifunctional electrospinning periosteum: Development status and prospect. Gingival keratinocyte adhesion on atomic layer-deposited hydroxyapatite coated titanium. Impact of composition and surfactant-templating on mesoporous bioactive glasses structural evolution, bioactivity, and drug delivery property. Investigation of polyvinylpyrrolidone-catechol-derived chitosan nanoconjugates allowed for kidney-targeted treatment of cisplatin-induced acute kidney injury and nursing care management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1