{"title":"动态垂直三重能:了解和预测三重能传递","authors":"Mihai V. Popescu , Robert S. Paton","doi":"10.1016/j.chempr.2024.07.001","DOIUrl":null,"url":null,"abstract":"<div><div>A computational approach for modeling and predicting triplet energy sensitization of organic molecules is described, which involves sampling the instantaneous, vertical energy gaps over molecular vibrational motions. This approach provides new theoretical support for the hot-band mechanism of energy transfer, in which the energy difference between donor and acceptor can be lessened by geometric distortions. We demonstrate excellent predictive performance against experimental triplet energies, with R<sup>2</sup> = 0.97 and a mean absolute error (MAE) of 1.7 kcal/mol, for a collection of 24 small organic molecules, whereas a static, adiabatic description performs significantly worse (R<sup>2</sup> = 0.51, MAE = 9.5 kcal/mol). Using this approach, it is possible to quantitatively predict the correct <em>E</em>/<em>Z-</em>isomerism of alkenes under energy transfer, for which adiabatic calculations predict the wrong outcome.</div></div>","PeriodicalId":268,"journal":{"name":"Chem","volume":"10 11","pages":"Pages 3428-3443"},"PeriodicalIF":19.1000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic vertical triplet energies: Understanding and predicting triplet energy transfer\",\"authors\":\"Mihai V. Popescu , Robert S. Paton\",\"doi\":\"10.1016/j.chempr.2024.07.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A computational approach for modeling and predicting triplet energy sensitization of organic molecules is described, which involves sampling the instantaneous, vertical energy gaps over molecular vibrational motions. This approach provides new theoretical support for the hot-band mechanism of energy transfer, in which the energy difference between donor and acceptor can be lessened by geometric distortions. We demonstrate excellent predictive performance against experimental triplet energies, with R<sup>2</sup> = 0.97 and a mean absolute error (MAE) of 1.7 kcal/mol, for a collection of 24 small organic molecules, whereas a static, adiabatic description performs significantly worse (R<sup>2</sup> = 0.51, MAE = 9.5 kcal/mol). Using this approach, it is possible to quantitatively predict the correct <em>E</em>/<em>Z-</em>isomerism of alkenes under energy transfer, for which adiabatic calculations predict the wrong outcome.</div></div>\",\"PeriodicalId\":268,\"journal\":{\"name\":\"Chem\",\"volume\":\"10 11\",\"pages\":\"Pages 3428-3443\"},\"PeriodicalIF\":19.1000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2451929424003395\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451929424003395","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Dynamic vertical triplet energies: Understanding and predicting triplet energy transfer
A computational approach for modeling and predicting triplet energy sensitization of organic molecules is described, which involves sampling the instantaneous, vertical energy gaps over molecular vibrational motions. This approach provides new theoretical support for the hot-band mechanism of energy transfer, in which the energy difference between donor and acceptor can be lessened by geometric distortions. We demonstrate excellent predictive performance against experimental triplet energies, with R2 = 0.97 and a mean absolute error (MAE) of 1.7 kcal/mol, for a collection of 24 small organic molecules, whereas a static, adiabatic description performs significantly worse (R2 = 0.51, MAE = 9.5 kcal/mol). Using this approach, it is possible to quantitatively predict the correct E/Z-isomerism of alkenes under energy transfer, for which adiabatic calculations predict the wrong outcome.
期刊介绍:
Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.