{"title":"碳涂层阳极氧化铝:合成、表征和应用","authors":"Hongyu Liu, Zheng-Ze Pan, Tetsuji Itoh, Takashi Kyotani, Hirotomo Nishihara","doi":"10.1063/5.0210821","DOIUrl":null,"url":null,"abstract":"Ordered porous carbon materials with regularly arranged pores and adjustable pore sizes have attracted significant attention due to their versatile applications across various fields. In this context, uniform carbon coating of anodic aluminum oxide (AAO) membranes is an effective approach to fabricating an ordered array of cylindrical carbonaceous nanopores with adjustable pore diameter and length. The resulting carbon-coated AAO (C/AAO) composite exhibits a meticulously ordered array of meso/macropores, devoid of inter-particle pores and resistance, setting it apart from conventional ordered porous carbons with powder forms. The pore dimensions of C/AAO can be precisely controlled over a wide range, and the carbon chemistry can be customized through heteroatom doping and chemical modifications, all without altering the pore structure. These inherent advantages position C/AAO as a highly promising material with broad application prospects. This review article provides a comprehensive overview of the synthesis and characterization of C/AAO and related materials, along with their diverse utilization in the fields of optics, field emission, gas sensing, energy storage, electrocatalyst support, and bionics. Furthermore, an outlook on the C/AAO materials is given at the end, highlighting their potential and associated challenges.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"13 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbon-coated anodic aluminum oxide: Synthesis, characterization, and applications\",\"authors\":\"Hongyu Liu, Zheng-Ze Pan, Tetsuji Itoh, Takashi Kyotani, Hirotomo Nishihara\",\"doi\":\"10.1063/5.0210821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ordered porous carbon materials with regularly arranged pores and adjustable pore sizes have attracted significant attention due to their versatile applications across various fields. In this context, uniform carbon coating of anodic aluminum oxide (AAO) membranes is an effective approach to fabricating an ordered array of cylindrical carbonaceous nanopores with adjustable pore diameter and length. The resulting carbon-coated AAO (C/AAO) composite exhibits a meticulously ordered array of meso/macropores, devoid of inter-particle pores and resistance, setting it apart from conventional ordered porous carbons with powder forms. The pore dimensions of C/AAO can be precisely controlled over a wide range, and the carbon chemistry can be customized through heteroatom doping and chemical modifications, all without altering the pore structure. These inherent advantages position C/AAO as a highly promising material with broad application prospects. This review article provides a comprehensive overview of the synthesis and characterization of C/AAO and related materials, along with their diverse utilization in the fields of optics, field emission, gas sensing, energy storage, electrocatalyst support, and bionics. Furthermore, an outlook on the C/AAO materials is given at the end, highlighting their potential and associated challenges.\",\"PeriodicalId\":8200,\"journal\":{\"name\":\"Applied physics reviews\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":11.9000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied physics reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0210821\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied physics reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0210821","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Carbon-coated anodic aluminum oxide: Synthesis, characterization, and applications
Ordered porous carbon materials with regularly arranged pores and adjustable pore sizes have attracted significant attention due to their versatile applications across various fields. In this context, uniform carbon coating of anodic aluminum oxide (AAO) membranes is an effective approach to fabricating an ordered array of cylindrical carbonaceous nanopores with adjustable pore diameter and length. The resulting carbon-coated AAO (C/AAO) composite exhibits a meticulously ordered array of meso/macropores, devoid of inter-particle pores and resistance, setting it apart from conventional ordered porous carbons with powder forms. The pore dimensions of C/AAO can be precisely controlled over a wide range, and the carbon chemistry can be customized through heteroatom doping and chemical modifications, all without altering the pore structure. These inherent advantages position C/AAO as a highly promising material with broad application prospects. This review article provides a comprehensive overview of the synthesis and characterization of C/AAO and related materials, along with their diverse utilization in the fields of optics, field emission, gas sensing, energy storage, electrocatalyst support, and bionics. Furthermore, an outlook on the C/AAO materials is given at the end, highlighting their potential and associated challenges.
期刊介绍:
Applied Physics Reviews (APR) is a journal featuring articles on critical topics in experimental or theoretical research in applied physics and applications of physics to other scientific and engineering branches. The publication includes two main types of articles:
Original Research: These articles report on high-quality, novel research studies that are of significant interest to the applied physics community.
Reviews: Review articles in APR can either be authoritative and comprehensive assessments of established areas of applied physics or short, timely reviews of recent advances in established fields or emerging areas of applied physics.