Yingjie Jiang, Anqi Tian, Li Yan, Xueqi Du, Lanmei Yang, Li Li, Jie Zhou, Qi Wang, Shuai Ruan, Xinping He, Yongqi Zhang, Xiaoping Yu, Yuanyuan Jiang, Fangfang Tu, Jiayuan Xiang, Wangjun Wan, Chen Wang, Yang Xia, Xinhui Xia, Wenkui Zhang
{"title":"用于检测电池缺陷和揭示失效机理的 X 射线计算机断层扫描 (CT) 技术","authors":"Yingjie Jiang, Anqi Tian, Li Yan, Xueqi Du, Lanmei Yang, Li Li, Jie Zhou, Qi Wang, Shuai Ruan, Xinping He, Yongqi Zhang, Xiaoping Yu, Yuanyuan Jiang, Fangfang Tu, Jiayuan Xiang, Wangjun Wan, Chen Wang, Yang Xia, Xinhui Xia, Wenkui Zhang","doi":"10.1007/s11664-024-11300-9","DOIUrl":null,"url":null,"abstract":"<p>As the global lithium-ion batteries (LIBs) market continues to expand, the necessity for dependable and secure LIBs has reached an all-time high. However, the use of batteries is associated with a number of significant risks, including the potential for thermal runaway and explosions. The meticulous inspection of LIBs is not only essential for guaranteeing their quality and functionality, but also for ensuring their safety. This underscores the criticality of advanced inspection technologies. In contrast to traditional inspection technologies, industrial x-ray computed tomography (CT) scanning technology affords a non-destructive comprehensive, three-dimensional insight into the interior structure of a battery without the need for disassembly. It can make the inner LIBs structures visible through the housing and even batteries already installed in devices can be examined safely and accurately without being removed or opened. This capability is of critical importance for the identification of defects that could lead to battery failure or safety issues, and guide the optimization of LIBs with better safety and performance. This perspective review briefly summarize the comprehensive application of industrial CT in LIBs including battery materials, cells and modules. Finally, we further discuss the challenges and prospects of industrial CT for energy storage.</p>","PeriodicalId":626,"journal":{"name":"Journal of Electronic Materials","volume":"47 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"X-Ray Computed Tomography (CT) Technology for Detecting Battery Defects and Revealing Failure Mechanisms\",\"authors\":\"Yingjie Jiang, Anqi Tian, Li Yan, Xueqi Du, Lanmei Yang, Li Li, Jie Zhou, Qi Wang, Shuai Ruan, Xinping He, Yongqi Zhang, Xiaoping Yu, Yuanyuan Jiang, Fangfang Tu, Jiayuan Xiang, Wangjun Wan, Chen Wang, Yang Xia, Xinhui Xia, Wenkui Zhang\",\"doi\":\"10.1007/s11664-024-11300-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As the global lithium-ion batteries (LIBs) market continues to expand, the necessity for dependable and secure LIBs has reached an all-time high. However, the use of batteries is associated with a number of significant risks, including the potential for thermal runaway and explosions. The meticulous inspection of LIBs is not only essential for guaranteeing their quality and functionality, but also for ensuring their safety. This underscores the criticality of advanced inspection technologies. In contrast to traditional inspection technologies, industrial x-ray computed tomography (CT) scanning technology affords a non-destructive comprehensive, three-dimensional insight into the interior structure of a battery without the need for disassembly. It can make the inner LIBs structures visible through the housing and even batteries already installed in devices can be examined safely and accurately without being removed or opened. This capability is of critical importance for the identification of defects that could lead to battery failure or safety issues, and guide the optimization of LIBs with better safety and performance. This perspective review briefly summarize the comprehensive application of industrial CT in LIBs including battery materials, cells and modules. Finally, we further discuss the challenges and prospects of industrial CT for energy storage.</p>\",\"PeriodicalId\":626,\"journal\":{\"name\":\"Journal of Electronic Materials\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electronic Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11664-024-11300-9\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11664-024-11300-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
随着全球锂离子电池(LIB)市场的不断扩大,对可靠、安全的锂离子电池的需求达到了前所未有的高度。然而,电池的使用存在许多重大风险,包括热失控和爆炸的可能性。对锂电池进行细致检查不仅对保证其质量和功能至关重要,而且对确保其安全也至关重要。这凸显了先进检测技术的重要性。与传统检测技术相比,工业 X 射线计算机断层扫描(CT)技术无需拆卸,就能以非破坏性的方式对电池内部结构进行全面、立体的检查。它可以使 LIBs 的内部结构透过外壳清晰可见,甚至可以安全、准确地检查已安装在设备中的电池,而无需拆卸或打开。这种能力对于识别可能导致电池故障或安全问题的缺陷,以及指导优化具有更好安全性和性能的锂电池至关重要。本视角综述简要总结了工业 CT 在锂电池中的全面应用,包括电池材料、电池和模块。最后,我们进一步讨论了工业 CT 在储能领域的挑战和前景。
X-Ray Computed Tomography (CT) Technology for Detecting Battery Defects and Revealing Failure Mechanisms
As the global lithium-ion batteries (LIBs) market continues to expand, the necessity for dependable and secure LIBs has reached an all-time high. However, the use of batteries is associated with a number of significant risks, including the potential for thermal runaway and explosions. The meticulous inspection of LIBs is not only essential for guaranteeing their quality and functionality, but also for ensuring their safety. This underscores the criticality of advanced inspection technologies. In contrast to traditional inspection technologies, industrial x-ray computed tomography (CT) scanning technology affords a non-destructive comprehensive, three-dimensional insight into the interior structure of a battery without the need for disassembly. It can make the inner LIBs structures visible through the housing and even batteries already installed in devices can be examined safely and accurately without being removed or opened. This capability is of critical importance for the identification of defects that could lead to battery failure or safety issues, and guide the optimization of LIBs with better safety and performance. This perspective review briefly summarize the comprehensive application of industrial CT in LIBs including battery materials, cells and modules. Finally, we further discuss the challenges and prospects of industrial CT for energy storage.
期刊介绍:
The Journal of Electronic Materials (JEM) reports monthly on the science and technology of electronic materials, while examining new applications for semiconductors, magnetic alloys, dielectrics, nanoscale materials, and photonic materials. The journal welcomes articles on methods for preparing and evaluating the chemical, physical, electronic, and optical properties of these materials. Specific areas of interest are materials for state-of-the-art transistors, nanotechnology, electronic packaging, detectors, emitters, metallization, superconductivity, and energy applications.
Review papers on current topics enable individuals in the field of electronics to keep abreast of activities in areas peripheral to their own. JEM also selects papers from conferences such as the Electronic Materials Conference, the U.S. Workshop on the Physics and Chemistry of II-VI Materials, and the International Conference on Thermoelectrics. It benefits both specialists and non-specialists in the electronic materials field.
A journal of The Minerals, Metals & Materials Society.