用于检测电池缺陷和揭示失效机理的 X 射线计算机断层扫描 (CT) 技术

IF 2.2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Electronic Materials Pub Date : 2024-07-27 DOI:10.1007/s11664-024-11300-9
Yingjie Jiang, Anqi Tian, Li Yan, Xueqi Du, Lanmei Yang, Li Li, Jie Zhou, Qi Wang, Shuai Ruan, Xinping He, Yongqi Zhang, Xiaoping Yu, Yuanyuan Jiang, Fangfang Tu, Jiayuan Xiang, Wangjun Wan, Chen Wang, Yang Xia, Xinhui Xia, Wenkui Zhang
{"title":"用于检测电池缺陷和揭示失效机理的 X 射线计算机断层扫描 (CT) 技术","authors":"Yingjie Jiang, Anqi Tian, Li Yan, Xueqi Du, Lanmei Yang, Li Li, Jie Zhou, Qi Wang, Shuai Ruan, Xinping He, Yongqi Zhang, Xiaoping Yu, Yuanyuan Jiang, Fangfang Tu, Jiayuan Xiang, Wangjun Wan, Chen Wang, Yang Xia, Xinhui Xia, Wenkui Zhang","doi":"10.1007/s11664-024-11300-9","DOIUrl":null,"url":null,"abstract":"<p>As the global lithium-ion batteries (LIBs) market continues to expand, the necessity for dependable and secure LIBs has reached an all-time high. However, the use of batteries is associated with a number of significant risks, including the potential for thermal runaway and explosions. The meticulous inspection of LIBs is not only essential for guaranteeing their quality and functionality, but also for ensuring their safety. This underscores the criticality of advanced inspection technologies. In contrast to traditional inspection technologies, industrial x-ray computed tomography (CT) scanning technology affords a non-destructive comprehensive, three-dimensional insight into the interior structure of a battery without the need for disassembly. It can make the inner LIBs structures visible through the housing and even batteries already installed in devices can be examined safely and accurately without being removed or opened. This capability is of critical importance for the identification of defects that could lead to battery failure or safety issues, and guide the optimization of LIBs with better safety and performance. This perspective review briefly summarize the comprehensive application of industrial CT in LIBs including battery materials, cells and modules. Finally, we further discuss the challenges and prospects of industrial CT for energy storage.</p>","PeriodicalId":626,"journal":{"name":"Journal of Electronic Materials","volume":"47 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"X-Ray Computed Tomography (CT) Technology for Detecting Battery Defects and Revealing Failure Mechanisms\",\"authors\":\"Yingjie Jiang, Anqi Tian, Li Yan, Xueqi Du, Lanmei Yang, Li Li, Jie Zhou, Qi Wang, Shuai Ruan, Xinping He, Yongqi Zhang, Xiaoping Yu, Yuanyuan Jiang, Fangfang Tu, Jiayuan Xiang, Wangjun Wan, Chen Wang, Yang Xia, Xinhui Xia, Wenkui Zhang\",\"doi\":\"10.1007/s11664-024-11300-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As the global lithium-ion batteries (LIBs) market continues to expand, the necessity for dependable and secure LIBs has reached an all-time high. However, the use of batteries is associated with a number of significant risks, including the potential for thermal runaway and explosions. The meticulous inspection of LIBs is not only essential for guaranteeing their quality and functionality, but also for ensuring their safety. This underscores the criticality of advanced inspection technologies. In contrast to traditional inspection technologies, industrial x-ray computed tomography (CT) scanning technology affords a non-destructive comprehensive, three-dimensional insight into the interior structure of a battery without the need for disassembly. It can make the inner LIBs structures visible through the housing and even batteries already installed in devices can be examined safely and accurately without being removed or opened. This capability is of critical importance for the identification of defects that could lead to battery failure or safety issues, and guide the optimization of LIBs with better safety and performance. This perspective review briefly summarize the comprehensive application of industrial CT in LIBs including battery materials, cells and modules. Finally, we further discuss the challenges and prospects of industrial CT for energy storage.</p>\",\"PeriodicalId\":626,\"journal\":{\"name\":\"Journal of Electronic Materials\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electronic Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11664-024-11300-9\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11664-024-11300-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

随着全球锂离子电池(LIB)市场的不断扩大,对可靠、安全的锂离子电池的需求达到了前所未有的高度。然而,电池的使用存在许多重大风险,包括热失控和爆炸的可能性。对锂电池进行细致检查不仅对保证其质量和功能至关重要,而且对确保其安全也至关重要。这凸显了先进检测技术的重要性。与传统检测技术相比,工业 X 射线计算机断层扫描(CT)技术无需拆卸,就能以非破坏性的方式对电池内部结构进行全面、立体的检查。它可以使 LIBs 的内部结构透过外壳清晰可见,甚至可以安全、准确地检查已安装在设备中的电池,而无需拆卸或打开。这种能力对于识别可能导致电池故障或安全问题的缺陷,以及指导优化具有更好安全性和性能的锂电池至关重要。本视角综述简要总结了工业 CT 在锂电池中的全面应用,包括电池材料、电池和模块。最后,我们进一步讨论了工业 CT 在储能领域的挑战和前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
X-Ray Computed Tomography (CT) Technology for Detecting Battery Defects and Revealing Failure Mechanisms

As the global lithium-ion batteries (LIBs) market continues to expand, the necessity for dependable and secure LIBs has reached an all-time high. However, the use of batteries is associated with a number of significant risks, including the potential for thermal runaway and explosions. The meticulous inspection of LIBs is not only essential for guaranteeing their quality and functionality, but also for ensuring their safety. This underscores the criticality of advanced inspection technologies. In contrast to traditional inspection technologies, industrial x-ray computed tomography (CT) scanning technology affords a non-destructive comprehensive, three-dimensional insight into the interior structure of a battery without the need for disassembly. It can make the inner LIBs structures visible through the housing and even batteries already installed in devices can be examined safely and accurately without being removed or opened. This capability is of critical importance for the identification of defects that could lead to battery failure or safety issues, and guide the optimization of LIBs with better safety and performance. This perspective review briefly summarize the comprehensive application of industrial CT in LIBs including battery materials, cells and modules. Finally, we further discuss the challenges and prospects of industrial CT for energy storage.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Electronic Materials
Journal of Electronic Materials 工程技术-材料科学:综合
CiteScore
4.10
自引率
4.80%
发文量
693
审稿时长
3.8 months
期刊介绍: The Journal of Electronic Materials (JEM) reports monthly on the science and technology of electronic materials, while examining new applications for semiconductors, magnetic alloys, dielectrics, nanoscale materials, and photonic materials. The journal welcomes articles on methods for preparing and evaluating the chemical, physical, electronic, and optical properties of these materials. Specific areas of interest are materials for state-of-the-art transistors, nanotechnology, electronic packaging, detectors, emitters, metallization, superconductivity, and energy applications. Review papers on current topics enable individuals in the field of electronics to keep abreast of activities in areas peripheral to their own. JEM also selects papers from conferences such as the Electronic Materials Conference, the U.S. Workshop on the Physics and Chemistry of II-VI Materials, and the International Conference on Thermoelectrics. It benefits both specialists and non-specialists in the electronic materials field. A journal of The Minerals, Metals & Materials Society.
期刊最新文献
Factors Influencing Standard PID Test and Anti-PID Performance of Ga-Doped PERC Mono-Facial Photovoltaic Modules Enhanced Microwave Magnetic and Dielectric Properties of YBiIG Ferrite by Ca-Zr Co-substitution Structural, Optical, and Magnetic Studies of Nickel-Doped β-Ga2O3 Monoclinic and Spinel Polycrystalline Powders Effect of Epoxy Material Viscosity and Gold Wire Configuration on Light-Emitting Diode Encapsulation Process Synthesis and Characterization of Sn-Doped CuO Thin Films for Gas Sensor Toward H2S Gas Sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1