{"title":"冷启动语境下的跨域语料库选择","authors":"Wei-Ching Hsiao, Hei Chia Wang","doi":"10.1177/01655515241263283","DOIUrl":null,"url":null,"abstract":"Sentiment analysis is a powerful tool for monitoring attitudes towards companies, products or services and identifying specific features that drive positive or negative sentiment. However, collecting labelled data for training sentiment analysis models in a specific domain can be challenging in practical applications. One promising solution to this ‘cold-start’ problem is domain adaptation, which leverages labelled data from a related source domain to train a model for the target domain. A critical yet often neglected aspect in prior research is the measurement of similarity between the source and target domains, a factor that greatly impacts the success of domain adaptation. To fill this gap, we propose a novel measure that combines semantic, syntactic and lexical features to assess corpus-level similarity between two domains. Our experimental results demonstrate that our method achieves high precision (0.91) and recall (0.75), outperforming traditional methods. Moreover, our proposed measure can assist new domain products in selecting the most suitable training data set for their sentiment analysis tasks.","PeriodicalId":54796,"journal":{"name":"Journal of Information Science","volume":"19 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cross-domain corpus selection for cold-start context\",\"authors\":\"Wei-Ching Hsiao, Hei Chia Wang\",\"doi\":\"10.1177/01655515241263283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sentiment analysis is a powerful tool for monitoring attitudes towards companies, products or services and identifying specific features that drive positive or negative sentiment. However, collecting labelled data for training sentiment analysis models in a specific domain can be challenging in practical applications. One promising solution to this ‘cold-start’ problem is domain adaptation, which leverages labelled data from a related source domain to train a model for the target domain. A critical yet often neglected aspect in prior research is the measurement of similarity between the source and target domains, a factor that greatly impacts the success of domain adaptation. To fill this gap, we propose a novel measure that combines semantic, syntactic and lexical features to assess corpus-level similarity between two domains. Our experimental results demonstrate that our method achieves high precision (0.91) and recall (0.75), outperforming traditional methods. Moreover, our proposed measure can assist new domain products in selecting the most suitable training data set for their sentiment analysis tasks.\",\"PeriodicalId\":54796,\"journal\":{\"name\":\"Journal of Information Science\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/01655515241263283\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/01655515241263283","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Cross-domain corpus selection for cold-start context
Sentiment analysis is a powerful tool for monitoring attitudes towards companies, products or services and identifying specific features that drive positive or negative sentiment. However, collecting labelled data for training sentiment analysis models in a specific domain can be challenging in practical applications. One promising solution to this ‘cold-start’ problem is domain adaptation, which leverages labelled data from a related source domain to train a model for the target domain. A critical yet often neglected aspect in prior research is the measurement of similarity between the source and target domains, a factor that greatly impacts the success of domain adaptation. To fill this gap, we propose a novel measure that combines semantic, syntactic and lexical features to assess corpus-level similarity between two domains. Our experimental results demonstrate that our method achieves high precision (0.91) and recall (0.75), outperforming traditional methods. Moreover, our proposed measure can assist new domain products in selecting the most suitable training data set for their sentiment analysis tasks.
期刊介绍:
The Journal of Information Science is a peer-reviewed international journal of high repute covering topics of interest to all those researching and working in the sciences of information and knowledge management. The Editors welcome material on any aspect of information science theory, policy, application or practice that will advance thinking in the field.